Suppr超能文献

在存在竞争风险的情况下,使用灵活参数生存模型估计受限平均生存时间和预期寿命损失。

Estimating restricted mean survival time and expected life-years lost in the presence of competing risks within flexible parametric survival models.

机构信息

Biostatistics Research Group, Department of Health Sciences, University of Leicester, University Road, Leicester, LE1 7RH, UK.

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.

出版信息

BMC Med Res Methodol. 2021 Mar 11;21(1):52. doi: 10.1186/s12874-021-01213-0.

Abstract

BACKGROUND

Royston-Parmar flexible parametric survival models (FPMs) can be fitted on either the cause-specific hazards or cumulative incidence scale in the presence of competing risks. An advantage of modelling within this framework for competing risks data is the ease at which alternative predictions to the (cause-specific or subdistribution) hazard ratio can be obtained. Restricted mean survival time (RMST), or restricted mean failure time (RMFT) on the mortality scale, is one such measure. This has an attractive interpretation, especially when the proportionality assumption is violated. Compared to similar measures, fewer assumptions are required and it does not require extrapolation. Furthermore, one can easily obtain the expected number of life-years lost, or gained, due to a particular cause of death, which is a further useful prognostic measure as introduced by Andersen.

METHODS

In the presence of competing risks, prediction of RMFT and the expected life-years lost due to a cause of death are presented using Royston-Parmar FPMs. These can be predicted for a specific covariate pattern to facilitate interpretation in observational studies at the individual level, or at the population-level using standardisation to obtain marginal measures. Predictions are illustrated using English colorectal data and are obtained using the Stata post-estimation command, standsurv.

RESULTS

Reporting such measures facilitate interpretation of a competing risks analysis, particularly when the proportional hazards assumption is not appropriate. Standardisation provides a useful way to obtain marginal estimates to make absolute comparisons between two covariate groups. Predictions can be made at various time-points and presented visually for each cause of death to better understand the overall impact of different covariate groups.

CONCLUSIONS

We describe estimation of RMFT, and expected life-years lost partitioned by each competing cause of death after fitting a single FPM on either the log-cumulative subdistribution, or cause-specific hazards scale. These can be used to facilitate interpretation of a competing risks analysis when the proportionality assumption is in doubt.

摘要

背景

在存在竞争风险的情况下,Royston-Parmar 灵活参数生存模型(FPM)可以拟合于特定原因风险或累积发生率尺度。在竞争风险数据的这个框架内建模的一个优势是,很容易获得(特定原因或亚分布)风险比的替代预测。受限平均生存时间(RMST)或死亡率尺度上的受限平均失败时间(RMFT)就是这样一种衡量标准。当违反比例性假设时,它具有吸引人的解释。与类似的措施相比,它需要的假设更少,并且不需要外推。此外,人们可以轻松获得由于特定死亡原因而导致的预期寿命损失或增加,这是 Andersen 引入的另一个有用的预后衡量标准。

方法

在存在竞争风险的情况下,使用 Royston-Parmar FPM 呈现 RMFT 和由于死亡原因导致的预期寿命损失的预测。可以针对特定协变量模式进行预测,以促进个体水平的观察性研究中的解释,或者使用标准化在人群水平上获得边缘措施。使用英国结直肠数据进行预测,并使用 Stata 后估计命令 standsurv 获得。

结果

报告这些措施有助于解释竞争风险分析,尤其是当比例风险假设不适用时。标准化提供了一种有用的方法来获得边际估计值,以便在两个协变量组之间进行绝对比较。可以在不同的时间点进行预测,并为每个死亡原因呈现可视化,以更好地了解不同协变量组的总体影响。

结论

我们描述了在拟合于对数累积亚分布或特定原因风险尺度上的单个 FPM 之后,对 RMFT 和按每个竞争死亡原因划分的预期寿命损失的估计。当比例性假设值得怀疑时,可以使用这些方法来帮助解释竞争风险分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f83a/7953595/e4d2c86d5471/12874_2021_1213_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验