Palmer Liam C, Stupp Samuel I
Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
Acc Chem Res. 2008 Dec;41(12):1674-84. doi: 10.1021/ar8000926.
Self-assembly of small molecules into one-dimensional nanostructures offers many potential applications in electronically and biologically active materials. The recent advances discussed in this Account demonstrate how researchers can use the fundamental principles of supramolecular chemistry to craft the size, shape, and internal structure of nanoscale objects. In each system described here, we used atomic force microscopy (AFM) and transmission electron microscopy (TEM) to study the assembly morphology. Circular dichroism, nuclear magnetic resonance, infrared, and optical spectroscopy provided additional information about the self-assembly behavior in solution at the molecular level. Dendron rod-coil molecules self-assemble into flat or helical ribbons. They can incorporate electronically conductive groups and can be mineralized with inorganic semiconductors. To understand the relative importance of each segment in forming the supramolecular structure, we synthetically modified the dendron, rod, and coil portions. The self-assembly depended on the generation number of the dendron, the number of hydrogen-bonding functions, and the length of the rod and coil segments. We formed chiral helices using a dendron-rod-coil molecule prepared from an enantiomerically enriched coil. Because helical nanostructures are important targets for use in biomaterials, nonlinear optics, and stereoselective catalysis, researchers would like to precisely control their shape and size. Tripeptide-containing peptide lipid molecules assemble into straight or twisted nanofibers in organic solvents. As seen by AFM, the sterics of bulky end groups can tune the helical pitch of these peptide lipid nanofibers in organic solvents. Furthermore, we demonstrated the potential for pitch control using trans-to-cis photoisomerization of a terminal azobenzene group. Other molecules called peptide amphiphiles (PAs) are known to assemble in water into cylindrical nanostructures that appear as nanofiber bundles. Surprisingly, TEM of a PA substituted by a nitrobenzyl group revealed assembly into quadruple helical fibers with a braided morphology. Upon photocleavage of this the nitrobenzyl group, the helices transform into single cylindrical nanofibers. Finally, inspired by the tobacco mosaic virus, we used a dumbbell-shaped, oligo(phenylene ethynylene) template to control the length of a PA nanofiber self-assembly (<10 nm). AFM showed complete disappearance of long nanofibers in the presence of this rigid-rod template. Results from quick-freeze/deep-etch TEM and dynamic light scattering demonstrated the templating behavior in aqueous solution. This strategy could provide a general method to control size the length of nonspherical supramolecular nanostructures.
小分子自组装成一维纳米结构在电子和生物活性材料方面有许多潜在应用。本综述中讨论的最新进展展示了研究人员如何利用超分子化学的基本原理来塑造纳米级物体的尺寸、形状和内部结构。在这里描述的每个系统中,我们使用原子力显微镜(AFM)和透射电子显微镜(TEM)来研究组装形态。圆二色性、核磁共振、红外和光谱学提供了有关溶液中分子水平自组装行为的更多信息。树枝状棒-线圈分子自组装成扁平或螺旋状带。它们可以结合导电基团,并可以用无机半导体矿化。为了理解每个片段在形成超分子结构中的相对重要性,我们对树枝状、棒状和线圈部分进行了合成修饰。自组装取决于树枝状分子的代数、氢键功能的数量以及棒状和线圈片段的长度。我们使用由对映体富集的线圈制备的树枝状棒-线圈分子形成了手性螺旋。由于螺旋纳米结构是生物材料、非线性光学和立体选择性催化中的重要目标,研究人员希望精确控制它们的形状和尺寸。含三肽的肽脂质分子在有机溶剂中组装成直的或扭曲的纳米纤维。如AFM所见,庞大端基的空间效应可以调节这些肽脂质纳米纤维在有机溶剂中的螺旋间距。此外,我们展示了利用末端偶氮苯基团的反式-顺式光异构化来控制间距的潜力。其他称为肽两亲物(PA)的分子已知在水中组装成圆柱状纳米结构,看起来像纳米纤维束。令人惊讶的是,用硝基苄基取代的PA的TEM显示组装成具有编织形态的四重螺旋纤维。在光裂解该硝基苄基后,螺旋转变为单个圆柱状纳米纤维。最后,受烟草花叶病毒的启发,我们使用哑铃形的聚(亚苯基乙炔)模板来控制PA纳米纤维自组装的长度(<10 nm)。AFM显示在这种刚性棒模板存在下长纳米纤维完全消失。快速冷冻/深度蚀刻TEM和动态光散射的结果证明了在水溶液中的模板行为。这种策略可以提供一种控制非球形超分子纳米结构尺寸和长度的通用方法。