Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
Nat Commun. 2023 Jun 30;14(1):3880. doi: 10.1038/s41467-023-39648-2.
The amino acid sequences of peptides determine their self-assembling properties. Accurate prediction of peptidic hydrogel formation, however, remains a challenging task. This work describes an interactive approach involving the mutual information exchange between experiment and machine learning for robust prediction and design of (tetra)peptide hydrogels. We chemically synthesize more than 160 natural tetrapeptides and evaluate their hydrogel-forming ability, and then employ machine learning-experiment iterative loops to improve the accuracy of the gelation prediction. We construct a score function coupling the aggregation propensity, hydrophobicity, and gelation corrector C, and generate an 8,000-sequence library, within which the success rate of predicting hydrogel formation reaches 87.1%. Notably, the de novo-designed peptide hydrogel selected from this work boosts the immune response of the receptor binding domain of SARS-CoV-2 in the mice model. Our approach taps into the potential of machine learning for predicting peptide hydrogelator and significantly expands the scope of natural peptide hydrogels.
肽的氨基酸序列决定了它们的自组装特性。然而,准确预测肽类水凝胶的形成仍然是一项具有挑战性的任务。本工作描述了一种涉及实验和机器学习之间的互信息交换的交互式方法,用于稳健地预测和设计(四)肽水凝胶。我们通过化学合成了 160 多种天然四肽,并评估了它们的水凝胶形成能力,然后采用机器学习-实验迭代循环来提高凝胶预测的准确性。我们构建了一个耦合聚集倾向、疏水性和凝胶校正因子 C 的评分函数,并生成了一个包含 8000 个序列的文库,其中预测水凝胶形成的成功率达到了 87.1%。值得注意的是,从这项工作中选择的从头设计的肽水凝胶在 SARS-CoV-2 受体结合域的小鼠模型中增强了免疫反应。我们的方法利用了机器学习在预测肽类水凝胶形成剂方面的潜力,并显著扩展了天然肽类水凝胶的范围。