Combe Adrien, Chen Shaoyu, Pacella Gianni, Stuart Marc C A, de Boer John Y, Portale Giuseppe, Feringa Ben L
Centre for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, China.
Nat Commun. 2025 Apr 24;16(1):3897. doi: 10.1038/s41467-025-58468-0.
The amplification of molecular motion along length scales for macroscopic muscle-like functions, based on supramolecular polymers, provides attractive opportunities ranging from soft actuators to responsive biomedical materials. Taking the challenge to reveal dynamic assembly parameters governing muscle functions, we present the design of a photoswitch amphiphile based on an overcrowded alkene-derived core, and developed supramolecular artificial muscles. Going from molecular motor amphiphile (MA) to switch amphiphile (SA), taking advantage of high thermal stability of the switch core, a self-recovering of bent SA artificial muscle is observed in post-photoactuation without external intervention. Eliminating molecular motions in SA artificial muscle during the post-photoactuation and aging process enables us to identify correlations between dynamic assembly transformations and macroscopic actuating functions. These findings provide insights into photoactuation and subsequent self-recovery mechanisms from the aspect of dynamic assembly process, which offers new opportunities for developing amphiphile-based supramolecular artificial muscles.
基于超分子聚合物,沿宏观尺度放大分子运动以实现类似肌肉的功能,为从软致动器到响应性生物医学材料等领域提供了诱人的机遇。面对揭示控制肌肉功能的动态组装参数这一挑战,我们展示了一种基于过度拥挤烯烃衍生核心的光开关两亲分子的设计,并开发了超分子人工肌肉。从分子马达两亲分子(MA)转变为开关两亲分子(SA),利用开关核心的高热稳定性,在光驱动后无需外部干预即可观察到弯曲的SA人工肌肉的自我恢复。在光驱动后和老化过程中消除SA人工肌肉中的分子运动,使我们能够确定动态组装转变与宏观驱动功能之间的相关性。这些发现从动态组装过程的角度深入了解了光驱动和随后的自我恢复机制,为开发基于两亲分子的超分子人工肌肉提供了新的机遇。