Cossart P, Veiga E
Institut Pasteur, Unité des Interactions Bactéries Cellules, Paris, France.
J Microsc. 2008 Sep;231(3):524-8. doi: 10.1111/j.1365-2818.2008.02065.x.
How invasive bacteria exploit mammalian host cell components to induce their entry into cells has received a lot of attention in the last two decades. Model organisms have emerged and helped understanding the various mechanisms that are used. Among those, Listeria monocytogenes is one of the most documented organisms. It enters into cells via two bacterial proteins, internalin (also called InlA) and InlB, which interact with cell surface receptors, E-cadherin and the hepatocyte growth factor receptor, Met, respectively. These interactions initiate a series of events that leads to actin polymerization, membrane invagination and bacterial internalization. Investigations on internalin- and InlB-mediated entries have repeatedly shown that Listeria fully usurps the host cell machinery. Moreover, they have also shown that previously unknown components discovered during the study of Listeria invasion play a role either in E-cadherin-mediated cell-cell adhesion or Met signalling. Unexpectedly, recent studies have highlighted a role for clathrin in Listeria InlB-mediated actin polymerization and entry, revealing a new role for this endocytic protein, i.e. in bacterial-induced internalization. Furthermore, comparative studies have demonstrated that the clathrin-mediated endocytosis machinery is also used in the internalin-E-cadherin pathway, and for the entry of other bacteria that enter by a 'zipper' mechanism. By contrast, the clathrin-mediated endocytic machinery is not used by bacteria that inject effectors into mammalian cells via the type III secretion system and enter by the so-called trigger mechanism, characterized by enormous membrane ruflles that result in the macropinocytosis of the corresponding bacteria. Finally, adherent bacteria, for example enteropathogenic Escherichia coli (EPEC), also co-opt clathrin to induce the formation of actin-rich pedestals. Together, these new data illuminate our view on how actin rearrangements may be coupled to clathrin recruitment during bacterial infection. They also shed light on a new function for clathrin in mammalian cells, i.e. internalization of objects much larger than previously accepted.
在过去二十年中,侵袭性细菌如何利用哺乳动物宿主细胞成分诱导自身进入细胞受到了广泛关注。已出现了一些模式生物,有助于理解所使用的各种机制。其中,单核细胞增生李斯特菌是研究记录最多的生物之一。它通过两种细菌蛋白内化素(也称为InlA)和InlB进入细胞,这两种蛋白分别与细胞表面受体E-钙黏蛋白和肝细胞生长因子受体Met相互作用。这些相互作用引发一系列事件,导致肌动蛋白聚合、膜内陷和细菌内化。对内化素和InlB介导的进入过程的研究反复表明,李斯特菌完全利用宿主细胞机制。此外,这些研究还表明,在李斯特菌入侵研究过程中发现的先前未知的成分,在E-钙黏蛋白介导的细胞间黏附或Met信号传导中发挥作用。出乎意料的是,最近的研究突出了网格蛋白在李斯特菌InlB介导的肌动蛋白聚合和进入过程中的作用,揭示了这种内吞蛋白的一个新作用,即在细菌诱导的内化过程中发挥作用。此外,比较研究表明,网格蛋白介导的内吞机制也用于内化素-E-钙黏蛋白途径,以及其他通过“拉链”机制进入细胞的细菌的进入过程。相比之下,通过III型分泌系统将效应蛋白注入哺乳动物细胞并通过所谓触发机制进入细胞的细菌不使用网格蛋白介导的内吞机制,该触发机制的特征是产生巨大的膜皱褶,导致相应细菌的巨胞饮作用。最后,黏附性细菌,例如肠致病性大肠杆菌(EPEC),也利用网格蛋白诱导富含肌动蛋白的基座形成。总之,这些新数据阐明了我们对细菌感染期间肌动蛋白重排如何与网格蛋白募集相偶联的看法。它们还揭示了网格蛋白在哺乳动物细胞中的一个新功能,即内化比以前认为的大得多的物体。