Suppr超能文献

热疗过程中三维温度场的估计:最优正则化参数和时间采样周期的研究

Estimating three-dimensional temperature fields during hyperthermia: studies of the optimal regularization parameter and time sampling period.

作者信息

Liauh C T, Clegg S T, Roemer R B

机构信息

Aerospace and Mechanical Engineering Department, University of Arizona, Tucson 85721.

出版信息

J Biomech Eng. 1991 May;113(2):230-8. doi: 10.1115/1.2891239.

Abstract

During hyperthermia therapy it is desirable to know the entire temperature field in the treatment region. However, accurately inferring this field from the limited number of temperature measurements available is very difficult, and thus state and parameter estimation methods have been used to attempt to solve this inherently ill-posed problem. To compensate for this ill-posedness and to improve the accuracy of this method, Tikhonov regularization of order zero has been used to significantly improve the results of the estimation procedure. It is also shown that the accuracies of the temperature estimates depend upon the value of the regularization parameter, which has an optimal value that is dependent on the perfusion pattern and magnitude. In addition, the transient power-off time sampling period (i.e., the length of time over which transient data is collected and used) influences the accuracy of the estimates, and an optimal sampling period is shown to exist. The effects of additive measurement noise are also investigated, as are the effects of the initial guess of the perfusion values, and the effects of both symmetric and asymmetric blood perfusion patterns. Random perfusion patterns with noisy data are the most difficult cases to evaluate. The cases studied are not a comprehensive set, but continue to show the feasibility of using state and parameter estimation methods to reconstruct the entire temperature field.

摘要

在热疗过程中,了解治疗区域的整个温度场是很有必要的。然而,从有限数量的可用温度测量值中准确推断出该温度场非常困难,因此已采用状态和参数估计方法来尝试解决这个本质上不适定的问题。为了弥补这种不适定性并提高该方法的准确性,零阶蒂霍诺夫正则化已被用于显著改善估计过程的结果。研究还表明,温度估计的准确性取决于正则化参数的值,该值存在一个取决于灌注模式和大小的最优值。此外,瞬态断电时间采样周期(即收集和使用瞬态数据的时间长度)会影响估计的准确性,并且存在一个最优采样周期。还研究了加性测量噪声的影响、灌注值初始猜测的影响以及对称和非对称血液灌注模式的影响。带有噪声数据的随机灌注模式是最难评估的情况。所研究的案例并不全面,但继续表明了使用状态和参数估计方法来重建整个温度场的可行性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验