Suppr超能文献

来自NADPH氧化酶的活性氧参与慢性低氧诱导的肺动脉高压仔猪肺血管反应的改变。

Reactive oxygen species from NADPH oxidase contribute to altered pulmonary vascular responses in piglets with chronic hypoxia-induced pulmonary hypertension.

作者信息

Fike Candice D, Slaughter James C, Kaplowitz Mark R, Zhang Yongmei, Aschner Judy L

机构信息

Department of Pediatrics, Vanderbilt University Medical Center, 2215 B Garland Avenue, Nashville, TN 37232-0656, USA.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2008 Nov;295(5):L881-8. doi: 10.1152/ajplung.00047.2008. Epub 2008 Aug 29.

Abstract

Our main objective was to determine whether reactive oxygen species (ROS), such as superoxide (O(2)(-)) and hydrogen peroxide (H(2)O(2)), contribute to altered pulmonary vascular responses in piglets with chronic hypoxia-induced pulmonary hypertension. Piglets were raised in either room air (control) or hypoxia for 3 days. The effect of the cell-permeable superoxide dismutase mimetic (SOD; M40403) and/or PEG-catalase (PEG-CAT) on responses to acetylcholine (ACh) was measured in endothelium-intact and denuded pulmonary resistance arteries (PRAs; 90-to-300-microm diameter). To determine whether NADPH oxidase is an enzymatic source of ROS, PRA responses to ACh were measured in the presence and absence of a NADPH oxidase inhibitor, apocynin (APO). A Western blot technique was used to assess expression of the NADPH oxidase subunit, p67phox. A lucigenin-derived chemiluminescence technique was used to measure ROS production stimulated by the NADPH oxidase substrate, NADPH. ACh responses, which were dilation in intact control arteries but constriction in both intact and denuded hypoxic arteries, were diminished by M40403, PEG-CAT, the combination of M40403 plus PEG-CAT, as well as by APO. Although total amounts were not different, membrane-associated p67phox was greater in PRAs from hypoxic compared with control piglets. NADPH-stimulated lucigenin luminescence was nearly doubled in PRAs from hypoxic vs. control piglets. We conclude that ROS generated by NADPH oxidase contribute to the aberrant pulmonary arterial responses in piglets exposed to 3 days of hypoxia.

摘要

我们的主要目的是确定活性氧(ROS),如超氧化物(O₂⁻)和过氧化氢(H₂O₂),是否在慢性缺氧诱导的肺动脉高压仔猪中导致肺血管反应改变。仔猪在常氧(对照)或缺氧环境中饲养3天。在完整和去内皮的肺阻力动脉(PRA;直径90至300微米)中测量细胞可渗透的超氧化物歧化酶模拟物(SOD;M40403)和/或聚乙二醇化过氧化氢酶(PEG-CAT)对乙酰胆碱(ACh)反应的影响。为了确定NADPH氧化酶是否为ROS的酶源,在存在和不存在NADPH氧化酶抑制剂夹竹桃麻素(APO)的情况下测量PRA对ACh的反应。采用蛋白质免疫印迹技术评估NADPH氧化酶亚基p67phox的表达。采用光泽精衍生的化学发光技术测量由NADPH氧化酶底物NADPH刺激产生的ROS。M40403、PEG-CAT、M40403加PEG-CAT的组合以及APO均可减弱ACh反应,在完整对照动脉中ACh反应为舒张,但在完整和去内皮的缺氧动脉中均为收缩。尽管总量没有差异,但与对照仔猪相比,缺氧仔猪PRA中膜相关的p67phox含量更高。与对照仔猪相比,缺氧仔猪PRA中NADPH刺激的光泽精发光几乎增加了一倍。我们得出结论,NADPH氧化酶产生的ROS导致暴露于3天缺氧环境的仔猪出现异常的肺动脉反应。

相似文献

1
Reactive oxygen species from NADPH oxidase contribute to altered pulmonary vascular responses in piglets with chronic hypoxia-induced pulmonary hypertension.
Am J Physiol Lung Cell Mol Physiol. 2008 Nov;295(5):L881-8. doi: 10.1152/ajplung.00047.2008. Epub 2008 Aug 29.
2
NADPH oxidases and reactive oxygen species at different stages of chronic hypoxia-induced pulmonary hypertension in newborn piglets.
Am J Physiol Lung Cell Mol Physiol. 2009 Oct;297(4):L596-607. doi: 10.1152/ajplung.90568.2008. Epub 2009 Jul 10.
5
Cyclooxygenase-2 and an early stage of chronic hypoxia-induced pulmonary hypertension in newborn pigs.
J Appl Physiol (1985). 2005 Mar;98(3):1111-8; discussion 1091. doi: 10.1152/japplphysiol.00810.2004. Epub 2004 Oct 29.
6
Role of reactive oxygen species and gp91phox in endothelial dysfunction of pulmonary arteries induced by chronic hypoxia.
Br J Pharmacol. 2006 Jul;148(5):714-23. doi: 10.1038/sj.bjp.0706779. Epub 2006 May 22.
7
Serotonin Signaling Through the 5-HT Receptor and NADPH Oxidase 1 in Pulmonary Arterial Hypertension.
Arterioscler Thromb Vasc Biol. 2017 Jul;37(7):1361-1370. doi: 10.1161/ATVBAHA.116.308929. Epub 2017 May 4.
8
Hypoxic pulmonary hypertension: role of superoxide and NADPH oxidase (gp91phox).
Am J Physiol Lung Cell Mol Physiol. 2006 Jan;290(1):L2-10. doi: 10.1152/ajplung.00135.2005. Epub 2005 Aug 5.
9
NAD(P)H oxidase-derived reactive oxygen species contribute to age-related impairments of endothelium-dependent dilation in rat soleus feed arteries.
J Appl Physiol (1985). 2011 May;110(5):1171-80. doi: 10.1152/japplphysiol.01037.2010. Epub 2011 Jan 13.

引用本文的文献

3
Pediatric Pulmonary Hypertension: Definitions, Mechanisms, Diagnosis, and Treatment.
Compr Physiol. 2021 Jun 30;11(3):2135-2190. doi: 10.1002/cphy.c200023.
4
L-citrulline increases arginase II protein levels and arginase activity in hypoxic piglet pulmonary artery endothelial cells.
Pulm Circ. 2021 Apr 17;11(2):20458940211006289. doi: 10.1177/20458940211006289. eCollection 2021 Apr-Jun.
5
Intermittent Hypoxia Augments Pulmonary Vasoconstrictor Reactivity through PKCβ/Mitochondrial Oxidant Signaling.
Am J Respir Cell Mol Biol. 2020 Jun;62(6):732-746. doi: 10.1165/rcmb.2019-0351OC.
7
Focus on Early Events: Pathogenesis of Pulmonary Arterial Hypertension Development.
Antioxid Redox Signal. 2019 Nov 1;31(13):933-953. doi: 10.1089/ars.2018.7673. Epub 2019 Jul 2.
8
Optimal oxygenation and role of free radicals in PPHN.
Free Radic Biol Med. 2019 Oct;142:97-106. doi: 10.1016/j.freeradbiomed.2019.04.001. Epub 2019 Apr 14.
9
Redox Regulation of Ion Channels and Receptors in Pulmonary Hypertension.
Antioxid Redox Signal. 2019 Oct 20;31(12):898-915. doi: 10.1089/ars.2018.7699. Epub 2019 Jan 25.
10
NADPH Oxidase Deficiency: A Multisystem Approach.
Oxid Med Cell Longev. 2017;2017:4590127. doi: 10.1155/2017/4590127. Epub 2017 Dec 21.

本文引用的文献

1
Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant.
Hypertension. 2008 Feb;51(2):211-7. doi: 10.1161/HYPERTENSIONAHA.107.100214. Epub 2007 Dec 17.
2
The NOX on pulmonary hypertension.
Circ Res. 2007 Aug 3;101(3):224-6. doi: 10.1161/CIRCRESAHA.107.158246.
3
Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy.
Free Radic Biol Med. 2007 Aug 1;43(3):332-47. doi: 10.1016/j.freeradbiomed.2007.03.027. Epub 2007 Mar 31.
4
Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature.
Circ Res. 2007 Aug 3;101(3):258-67. doi: 10.1161/CIRCRESAHA.107.148015. Epub 2007 Jun 21.
5
The role of nitric oxide synthase-derived reactive oxygen species in the altered relaxation of pulmonary arteries from lambs with increased pulmonary blood flow.
Am J Physiol Heart Circ Physiol. 2007 Sep;293(3):H1491-7. doi: 10.1152/ajpheart.00185.2007. Epub 2007 May 18.
6
The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology.
Physiol Rev. 2007 Jan;87(1):245-313. doi: 10.1152/physrev.00044.2005.
7
A note on the power of Fisher's least significant difference procedure.
Pharm Stat. 2006 Oct-Dec;5(4):253-63. doi: 10.1002/pst.210.
8
Superoxide dismutase improves oxygenation and reduces oxidation in neonatal pulmonary hypertension.
Am J Respir Crit Care Med. 2006 Dec 15;174(12):1370-7. doi: 10.1164/rccm.200605-676OC. Epub 2006 Sep 28.
9
H2O2 increases production of constrictor prostaglandins in smooth muscle leading to enhanced arteriolar tone in Type 2 diabetic mice.
Am J Physiol Heart Circ Physiol. 2007 Jan;292(1):H649-56. doi: 10.1152/ajpheart.00596.2006. Epub 2006 Sep 22.
10
Free radicals and antioxidants in normal physiological functions and human disease.
Int J Biochem Cell Biol. 2007;39(1):44-84. doi: 10.1016/j.biocel.2006.07.001. Epub 2006 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验