Suppr超能文献

间歇性低氧通过蛋白激酶 Cβ/线粒体氧化剂信号增强肺血管收缩反应性。

Intermittent Hypoxia Augments Pulmonary Vasoconstrictor Reactivity through PKCβ/Mitochondrial Oxidant Signaling.

机构信息

Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico.

出版信息

Am J Respir Cell Mol Biol. 2020 Jun;62(6):732-746. doi: 10.1165/rcmb.2019-0351OC.

Abstract

Pulmonary vasoconstriction resulting from intermittent hypoxia (IH) contributes to pulmonary hypertension (pHTN) in patients with sleep apnea (SA), although the mechanisms involved remain poorly understood. Based on prior studies in patients with SA and animal models of SA, the objective of this study was to evaluate the role of PKCβ and mitochondrial reactive oxygen species (mitoROS) in mediating enhanced pulmonary vasoconstrictor reactivity after IH. We hypothesized that PKCβ mediates vasoconstriction through interaction with the scaffolding protein PICK1 (protein interacting with C kinase 1), activation of mitochondrial ATP-sensitive potassium channels (mitoK), and stimulated production of mitoROS. We further hypothesized that this signaling axis mediates enhanced vasoconstriction and pHTN after IH. Rats were exposed to IH or sham conditions (7 h/d, 4 wk). Chronic oral administration of the antioxidant Tempol or the PKCβ inhibitor LY-333531 abolished IH-induced increases in right ventricular systolic pressure and right ventricular hypertrophy. Furthermore, scavengers of O or mitoROS prevented enhanced PKCβ-dependent vasoconstrictor reactivity to endothelin-1 in pulmonary arteries from IH rats. In addition, this PKCβ/mitoROS signaling pathway could be stimulated by the PKC activator PMA in pulmonary arteries from control rats, and in both rat and human pulmonary arterial smooth muscle cells. These responses to PMA were attenuated by inhibition of mitoK or PICK1. Subcellular fractionation and proximity ligation assays further demonstrated that PKCβ acutely translocates to mitochondria upon stimulation and associates with PICK1. We conclude that a PKCβ/mitoROS signaling axis contributes to enhanced vasoconstriction and pHTN after IH. Furthermore, PKCβ mediates pulmonary vasoconstriction through interaction with PICK1, activation of mitoK, and subsequent mitoROS generation.

摘要

间歇性低氧(IH)引起的肺血管收缩导致睡眠呼吸暂停(SA)患者的肺动脉高压(pHTN),尽管其涉及的机制仍知之甚少。基于 SA 患者和 SA 动物模型的先前研究,本研究旨在评估蛋白激酶 Cβ(PKCβ)和线粒体活性氧物种(mitoROS)在介导 IH 后增强的肺血管收缩反应中的作用。我们假设 PKCβ 通过与支架蛋白 PICK1(蛋白相互作用激酶 1)相互作用、激活线粒体 ATP 敏感性钾通道(mitoK)和刺激产生 mitoROS 来介导血管收缩。我们进一步假设该信号轴介导 IH 后增强的血管收缩和 pHTN。大鼠暴露于 IH 或假条件(7 h/d,4 周)。慢性口服抗氧化剂 Tempol 或 PKCβ 抑制剂 LY-333531 可消除 IH 诱导的右心室收缩压和右心室肥厚的增加。此外,O 或 mitoROS 的清除剂可防止 IH 大鼠肺动脉中内皮素-1 依赖性 PKCβ 依赖性血管收缩反应增强。此外,PKC 激活剂 PMA 可刺激来自对照大鼠的肺动脉中的这种 PKCβ/mitoROS 信号通路,并且在大鼠和人肺动脉平滑肌细胞中也是如此。这些对 PMA 的反应可通过抑制 mitoK 或 PICK1 减弱。亚细胞分级和接近连接测定进一步表明,PKCβ 在刺激时急性易位到线粒体,并与 PICK1 相关。我们得出结论,PKCβ/mitoROS 信号通路有助于 IH 后增强的血管收缩和 pHTN。此外,PKCβ 通过与 PICK1 相互作用、激活 mitoK 以及随后产生 mitoROS 来介导肺血管收缩。

相似文献

1
Intermittent Hypoxia Augments Pulmonary Vasoconstrictor Reactivity through PKCβ/Mitochondrial Oxidant Signaling.
Am J Respir Cell Mol Biol. 2020 Jun;62(6):732-746. doi: 10.1165/rcmb.2019-0351OC.
2
PKCβ and reactive oxygen species mediate enhanced pulmonary vasoconstrictor reactivity following chronic hypoxia in neonatal rats.
Am J Physiol Heart Circ Physiol. 2020 Feb 1;318(2):H470-H483. doi: 10.1152/ajpheart.00629.2019. Epub 2020 Jan 10.
3
Role for PKCβ in enhanced endothelin-1-induced pulmonary vasoconstrictor reactivity following intermittent hypoxia.
Am J Physiol Lung Cell Mol Physiol. 2011 Nov;301(5):L745-54. doi: 10.1152/ajplung.00020.2011. Epub 2011 Jul 29.
4
Intermittent hypoxia-induced increases in reactive oxygen species activate NFATc3 increasing endothelin-1 vasoconstrictor reactivity.
Vascul Pharmacol. 2014 Jan;60(1):17-24. doi: 10.1016/j.vph.2013.11.001. Epub 2013 Nov 15.
5
Differential effects of chronic hypoxia and intermittent hypocapnic and eucapnic hypoxia on pulmonary vasoreactivity.
J Appl Physiol (1985). 2008 Jan;104(1):110-8. doi: 10.1152/japplphysiol.00698.2005. Epub 2007 Oct 18.
6
Intermittent hypoxia augments pulmonary vascular smooth muscle reactivity to NO: regulation by reactive oxygen species.
J Appl Physiol (1985). 2011 Oct;111(4):980-8. doi: 10.1152/japplphysiol.01286.2010. Epub 2011 Jul 14.
7
Contribution of reactive oxygen species to the pathogenesis of pulmonary arterial hypertension.
PLoS One. 2017 Jun 30;12(6):e0180455. doi: 10.1371/journal.pone.0180455. eCollection 2017.
8
Actin polymerization contributes to enhanced pulmonary vasoconstrictor reactivity after chronic hypoxia.
Am J Physiol Heart Circ Physiol. 2018 May 1;314(5):H1011-H1021. doi: 10.1152/ajpheart.00664.2017. Epub 2018 Jan 26.
9
Augmented endothelin vasoconstriction in intermittent hypoxia-induced hypertension.
Hypertension. 2005 Apr;45(4):705-9. doi: 10.1161/01.HYP.0000153794.52852.04. Epub 2005 Feb 28.
10
Endothelin-1-induced vasoconstriction does not require intracellular Ca²⁺ waves in arteries from rats exposed to intermittent hypoxia.
Am J Physiol Heart Circ Physiol. 2014 Mar 1;306(5):H667-73. doi: 10.1152/ajpheart.00643.2013. Epub 2014 Jan 10.

引用本文的文献

6
Role of Sensory Nerves in Pulmonary Fibrosis.
Int J Mol Sci. 2024 Mar 21;25(6):3538. doi: 10.3390/ijms25063538.
7
Contribution of Mitochondrial Reactive Oxygen Species to Chronic Hypoxia-Induced Pulmonary Hypertension.
Antioxidants (Basel). 2023 Nov 30;12(12):2060. doi: 10.3390/antiox12122060.
8
KAT's in the Cradle: p300/CBP and Regulation of HIF-1 and Blood Pressure during Intermittent Hypoxia.
Am J Respir Cell Mol Biol. 2024 Feb;70(2):87-88. doi: 10.1165/rcmb.2023-0435ED.

本文引用的文献

2
Sleep Apnea and Cardiovascular Disease: An Enigmatic Risk Factor.
Circ Res. 2018 Jun 8;122(12):1741-1764. doi: 10.1161/CIRCRESAHA.118.310783.
3
Actin polymerization contributes to enhanced pulmonary vasoconstrictor reactivity after chronic hypoxia.
Am J Physiol Heart Circ Physiol. 2018 May 1;314(5):H1011-H1021. doi: 10.1152/ajpheart.00664.2017. Epub 2018 Jan 26.
4
Contribution of reactive oxygen species to the pathogenesis of pulmonary arterial hypertension.
PLoS One. 2017 Jun 30;12(6):e0180455. doi: 10.1371/journal.pone.0180455. eCollection 2017.
5
Sleep Apnea: Types, Mechanisms, and Clinical Cardiovascular Consequences.
J Am Coll Cardiol. 2017 Feb 21;69(7):841-858. doi: 10.1016/j.jacc.2016.11.069.
7
What do we not know about mitochondrial potassium channels?
Biochim Biophys Acta. 2016 Aug;1857(8):1247-1257. doi: 10.1016/j.bbabio.2016.03.007. Epub 2016 Mar 4.
8
PICK1/calcineurin suppress ASIC1-mediated Ca2+ entry in rat pulmonary arterial smooth muscle cells.
Am J Physiol Cell Physiol. 2016 Mar 1;310(5):C390-400. doi: 10.1152/ajpcell.00091.2015. Epub 2015 Dec 23.
9
Sleep Apnea Research in Animals. Past, Present, and Future.
Am J Respir Cell Mol Biol. 2016 Mar;54(3):299-305. doi: 10.1165/rcmb.2015-0218TR.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验