Suppr超能文献

在栗色柄锈菌的子囊孢子萌发过程中,Pls1四跨膜蛋白的关键作用为真菌植物病原体和腐生菌形态发生过程的趋同进化提供了一个例子。

The crucial role of the Pls1 tetraspanin during ascospore germination in Podospora anserina provides an example of the convergent evolution of morphogenetic processes in fungal plant pathogens and saprobes.

作者信息

Lambou Karine, Malagnac Fabienne, Barbisan Crystel, Tharreau Didier, Lebrun Marc-Henri, Silar Philippe

机构信息

UMR 5240 CNRS-UCB-INSA-Bayer CropScience, Microbiologie Adaptation et Pathogénie, Lyon Cedex 09, France.

出版信息

Eukaryot Cell. 2008 Oct;7(10):1809-18. doi: 10.1128/EC.00149-08. Epub 2008 Aug 29.

Abstract

Pls1 tetraspanins were shown for some pathogenic fungi to be essential for appressorium-mediated penetration into their host plants. We show here that Podospora anserina, a saprobic fungus lacking appressorium, contains PaPls1, a gene orthologous to known PLS1 genes. Inactivation of PaPls1 demonstrates that this gene is specifically required for the germination of ascospores in P. anserina. These ascospores are heavily melanized cells that germinate under inducing conditions through a specific pore. On the contrary, MgPLS1, which fully complements a DeltaPaPls1 ascospore germination defect, has no role in the germination of Magnaporthe grisea nonmelanized ascospores but is required for the formation of the penetration peg at the pore of its melanized appressorium. P. anserina mutants with mutation of PaNox2, which encodes the NADPH oxidase of the NOX2 family, display the same ascospore-specific germination defect as the DeltaPaPls1 mutant. Both mutant phenotypes are suppressed by the inhibition of melanin biosynthesis, suggesting that they are involved in the same cellular process required for the germination of P. anserina melanized ascospores. The analysis of the distribution of PLS1 and NOX2 genes in fungal genomes shows that they are either both present or both absent. These results indicate that the germination of P. anserina ascospores and the formation of the M. grisea appressorium penetration peg use the same molecular machinery that includes Pls1 and Nox2. This machinery is specifically required for the emergence of polarized hyphae from reinforced structures such as appressoria and ascospores. Its recurrent recruitment during fungal evolution may account for some of the morphogenetic convergence observed in fungi.

摘要

已表明,对于一些致病真菌而言,Pls1四跨膜蛋白对于附着胞介导的侵入宿主植物至关重要。我们在此表明,嗜鸟粪盘菌这种缺乏附着胞的腐生真菌含有PaPls1,这是一个与已知PLS1基因直系同源的基因。PaPls1的失活表明,该基因是嗜鸟粪盘菌子囊孢子萌发所特需的。这些子囊孢子是高度黑化的细胞,在诱导条件下通过特定的孔萌发。相反,完全弥补ΔPaPls1子囊孢子萌发缺陷的MgPLS1,在稻瘟病菌非黑化子囊孢子的萌发中不起作用,但却是其黑化附着胞孔处侵染钉形成所必需的。编码NOX2家族NADPH氧化酶的PaNox2发生突变的嗜鸟粪盘菌突变体,表现出与ΔPaPls1突变体相同的子囊孢子特异性萌发缺陷。两种突变体表型均因黑色素生物合成的抑制而受到抑制,这表明它们参与了嗜鸟粪盘菌黑化子囊孢子萌发所需的同一细胞过程。对真菌基因组中PLS1和NOX2基因分布的分析表明,它们要么同时存在,要么同时缺失。这些结果表明,嗜鸟粪盘菌子囊孢子的萌发和稻瘟病菌附着胞侵染钉的形成使用了包括Pls1和Nox2在内的相同分子机制。这种机制是从诸如附着胞和子囊孢子等强化结构中产生极化菌丝所特需的。其在真菌进化过程中的反复招募可能解释了在真菌中观察到的一些形态发生趋同现象。

相似文献

2
Mutants: New Weapons To Unravel Ascospore Germination Regulation in the Model Fungus .
Microbiol Spectr. 2023 Feb 14;11(2):e0146122. doi: 10.1128/spectrum.01461-22.
4
Fungi have three tetraspanin families with distinct functions.
BMC Genomics. 2008 Feb 3;9:63. doi: 10.1186/1471-2164-9-63.
6
Functions and regulation of the Nox family in the filamentous fungus Podospora anserina: a new role in cellulose degradation.
Mol Microbiol. 2009 Oct;74(2):480-96. doi: 10.1111/j.1365-2958.2009.06878.x. Epub 2009 Sep 22.
7
Two nuclear life cycle-regulated genes encode interchangeable subunits c of mitochondrial ATP synthase in Podospora anserina.
Mol Biol Evol. 2011 Jul;28(7):2063-75. doi: 10.1093/molbev/msr025. Epub 2011 Jan 27.
8
The NADPH oxidase complexes in Botrytis cinerea: evidence for a close association with the ER and the tetraspanin Pls1.
PLoS One. 2013;8(2):e55879. doi: 10.1371/journal.pone.0055879. Epub 2013 Feb 13.
9
Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea.
Mol Plant Microbe Interact. 2004 May;17(5):547-56. doi: 10.1094/MPMI.2004.17.5.547.
10
Peroxisome dynamics during development of the fungus Podospora anserina.
Mycologia. 2016 May-Jun;108(3):590-602. doi: 10.3852/15-112. Epub 2016 Feb 23.

引用本文的文献

1
Hyphopodium-Specific Signaling Is Required for Plant Infection by .
J Fungi (Basel). 2023 Apr 18;9(4):484. doi: 10.3390/jof9040484.
2
Mutants: New Weapons To Unravel Ascospore Germination Regulation in the Model Fungus .
Microbiol Spectr. 2023 Feb 14;11(2):e0146122. doi: 10.1128/spectrum.01461-22.
3
Appressoria-Small but Incredibly Powerful Structures in Plant-Pathogen Interactions.
Int J Mol Sci. 2023 Jan 21;24(3):2141. doi: 10.3390/ijms24032141.
6
Crosstalk Between Pheromone Signaling and NADPH Oxidase Complexes Coordinates Fungal Developmental Processes.
Front Microbiol. 2020 Jul 28;11:1722. doi: 10.3389/fmicb.2020.01722. eCollection 2020.
7
The NADPH oxidase in Volvariella volvacea and its differential expression in response to mycelial ageing and mechanical injury.
Braz J Microbiol. 2020 Mar;51(1):87-94. doi: 10.1007/s42770-019-00165-4. Epub 2019 Oct 30.
8
NADPH Oxidase NOX-1 Is Localized in the Vacuolar System and the Plasma Membrane.
Front Microbiol. 2019 Aug 14;10:1825. doi: 10.3389/fmicb.2019.01825. eCollection 2019.
9
A RID-like putative cytosine methyltransferase homologue controls sexual development in the fungus Podospora anserina.
PLoS Genet. 2019 Aug 14;15(8):e1008086. doi: 10.1371/journal.pgen.1008086. eCollection 2019 Aug.
10
Appressorium: The Breakthrough in .
J Fungi (Basel). 2019 Aug 3;5(3):72. doi: 10.3390/jof5030072.

本文引用的文献

1
NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea.
Mol Plant Microbe Interact. 2008 Jun;21(6):808-19. doi: 10.1094/MPMI-21-6-0808.
2
The genome sequence of the model ascomycete fungus Podospora anserina.
Genome Biol. 2008;9(5):R77. doi: 10.1186/gb-2008-9-5-r77. Epub 2008 May 6.
3
Gene deletion and allelic replacement in the filamentous fungus Podospora anserina.
Curr Genet. 2008 Apr;53(4):249-58. doi: 10.1007/s00294-008-0180-3. Epub 2008 Feb 12.
4
Fungi have three tetraspanin families with distinct functions.
BMC Genomics. 2008 Feb 3;9:63. doi: 10.1186/1471-2164-9-63.
5
Improved gene targeting in Magnaporthe grisea by inactivation of MgKU80 required for non-homologous end joining.
Fungal Genet Biol. 2008 Jan;45(1):68-75. doi: 10.1016/j.fgb.2007.06.006. Epub 2007 Jul 10.
6
Identification of PaPKS1, a polyketide synthase involved in melanin formation and its use as a genetic tool in Podospora anserina.
Mycol Res. 2007 Aug;111(Pt 8):901-8. doi: 10.1016/j.mycres.2007.05.011. Epub 2007 Jun 5.
7
Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease.
Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11772-7. doi: 10.1073/pnas.0700574104. Epub 2007 Jun 28.
8
Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis.
Eukaryot Cell. 2007 Jun;6(6):997-1005. doi: 10.1128/EC.00011-07. Epub 2007 Apr 6.
9
From genes to genomes: a new paradigm for studying fungal pathogenesis in Magnaporthe oryzae.
Adv Genet. 2007;57:175-218. doi: 10.1016/S0065-2660(06)57005-1.
10
The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology.
Physiol Rev. 2007 Jan;87(1):245-313. doi: 10.1152/physrev.00044.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验