Suppr超能文献

通过结构和突变分析解析粪肠球菌偶氮还原酶(AzoA)的色氨酸-105的功能作用。

Functional role of Trp-105 of Enterococcus faecalis azoreductase (AzoA) as resolved by structural and mutational analysis.

作者信息

Chen Huizhong, Xu Haiyan, Kweon Ohgew, Chen Siwei, Cerniglia Carl E

机构信息

Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079-9502, USA.

出版信息

Microbiology (Reading). 2008 Sep;154(Pt 9):2659-2667. doi: 10.1099/mic.0.2008/019877-0.

Abstract

Enterococcus faecalis azoreductase (AzoA) is a very active enzyme with a broad spectrum of substrate specificity and is capable of degrading various azo dyes. The enzyme has an absolute requirement for reduced FMN, which delivers a total of four electrons from NADH to the substrate, resulting in the cleavage of the nitrogen double bond. In this study, we report the identification of amino acid residues critical for FMN binding in AzoA. FMN is stabilized by 22 amino acid residues, eight of which, Trp-105, Asn-106, Leu-107, Gly-150, Gly-151, Tyr-153, Asn-121 and Tyr-129, are involved in binding the FMN isoalloxazine ring. In silico analysis of the amino acid residues revealed that the Trp residue at position 105 of AzoA is the most likely significant contributor to the binding of FMN to the enzyme and is involved in FMN stabilization and destabilization. Site-directed mutagenesis analysis of Trp-105 was performed to determine the role of this amino acid residue in FMN binding and azo dye reductive activity. The mutant proteins were overexpressed in Escherichia coli and purified by anion-exchange and size-exclusion chromatography. The replacement of Trp-105 by the small side-chain amino acids Ala and Gly caused complete loss of both affinity for FMN and enzyme activity. Substitution of Tyr for Trp-105 did not significantly decrease the V(max) of the enzyme (22 % reduction). Substitutions with three bulky side-chain amino acids, Gln, Phe and His, produced enzymes with lower V(max) values (decreases of 68.2, 30.6 and 8.2-fold, respectively). However, these mutated enzymes maintained K(m) values similar to the wild-type enzyme. This study provides an insight into the catalytic properties of AzoA in FMN stabilization and enzyme activity.

摘要

粪肠球菌偶氮还原酶(AzoA)是一种活性很强的酶,具有广泛的底物特异性,能够降解多种偶氮染料。该酶对还原型黄素单核苷酸(FMN)有绝对需求,FMN从烟酰胺腺嘌呤二核苷酸(NADH)向底物总共传递四个电子,导致氮双键断裂。在本研究中,我们报告了对AzoA中FMN结合至关重要的氨基酸残基的鉴定。FMN由22个氨基酸残基稳定,其中8个,即色氨酸-105(Trp-105)、天冬酰胺-106(Asn-106)、亮氨酸-107(Leu-107)、甘氨酸-150(Gly-150)、甘氨酸-151(Gly-151)、酪氨酸-153(Tyr-153)、天冬酰胺-121(Asn-121)和酪氨酸-129(Tyr-129),参与结合FMN异咯嗪环。对这些氨基酸残基的计算机分析表明,AzoA第105位的色氨酸残基最有可能是FMN与该酶结合的重要贡献者,并参与FMN的稳定和去稳定过程。对Trp-105进行定点诱变分析,以确定该氨基酸残基在FMN结合和偶氮染料还原活性中的作用。突变蛋白在大肠杆菌中过表达,并通过阴离子交换和尺寸排阻色谱法纯化。用小侧链氨基酸丙氨酸(Ala)和甘氨酸取代Trp-105导致对FMN的亲和力和酶活性完全丧失。用酪氨酸取代Trp-105并没有显著降低酶的最大反应速度(V(max))(降低22%)。用三个大侧链氨基酸谷氨酰胺(Gln)、苯丙氨酸(Phe)和组氨酸(His)取代,产生的酶具有较低的V(max)值(分别降低68.2、30.6和8.2倍)。然而,这些突变酶的米氏常数(K(m))值与野生型酶相似。本研究深入了解了AzoA在FMN稳定和酶活性方面的催化特性。

相似文献

1
Functional role of Trp-105 of Enterococcus faecalis azoreductase (AzoA) as resolved by structural and mutational analysis.
Microbiology (Reading). 2008 Sep;154(Pt 9):2659-2667. doi: 10.1099/mic.0.2008/019877-0.
2
Crystal structure of an aerobic FMN-dependent azoreductase (AzoA) from Enterococcus faecalis.
Arch Biochem Biophys. 2007 Jul 1;463(1):68-77. doi: 10.1016/j.abb.2007.03.003. Epub 2007 Mar 30.
3
Probing the NADH- and Methyl Red-binding site of a FMN-dependent azoreductase (AzoA) from Enterococcus faecalis.
Arch Biochem Biophys. 2012 Apr 15;520(2):99-107. doi: 10.1016/j.abb.2012.02.010. Epub 2012 Feb 24.
7
Identification of Enterococcus faecalis enzymes with azoreductases and/or nitroreductase activity.
BMC Microbiol. 2017 May 25;17(1):126. doi: 10.1186/s12866-017-1033-3.
8
Identification and isolation of an azoreductase from Enterococcus faecium.
Curr Issues Mol Biol. 2010;12(1):43-8. Epub 2009 Sep 10.
9
Mechanistic and Crystallographic Studies of Azoreductase AzoA from A01.
ACS Chem Biol. 2020 Feb 21;15(2):504-512. doi: 10.1021/acschembio.9b00970. Epub 2020 Jan 29.

引用本文的文献

1
Bacterial metabolism rescues the inhibition of intestinal drug absorption by food and drug additives.
Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):16009-16018. doi: 10.1073/pnas.1920483117. Epub 2020 Jun 22.
2
Mechanistic and Crystallographic Studies of Azoreductase AzoA from A01.
ACS Chem Biol. 2020 Feb 21;15(2):504-512. doi: 10.1021/acschembio.9b00970. Epub 2020 Jan 29.
3
Azoreductase activity of dye-decolorizing bacteria isolated from the human gut microbiota.
Sci Rep. 2019 Apr 2;9(1):5508. doi: 10.1038/s41598-019-41894-8.
4
Mutation network-based understanding of pleiotropic and epistatic mutational behavior of FMN-dependent azoreductase.
Biochem Biophys Rep. 2017 Nov 6;12:240-244. doi: 10.1016/j.bbrep.2017.10.008. eCollection 2017 Dec.
5
Identification of Enterococcus faecalis enzymes with azoreductases and/or nitroreductase activity.
BMC Microbiol. 2017 May 25;17(1):126. doi: 10.1186/s12866-017-1033-3.
6
Evaluation of impact of exposure of Sudan azo dyes and their metabolites on human intestinal bacteria.
Anaerobe. 2012 Aug;18(4):445-53. doi: 10.1016/j.anaerobe.2012.05.002. Epub 2012 May 23.
7
Probing the NADH- and Methyl Red-binding site of a FMN-dependent azoreductase (AzoA) from Enterococcus faecalis.
Arch Biochem Biophys. 2012 Apr 15;520(2):99-107. doi: 10.1016/j.abb.2012.02.010. Epub 2012 Feb 24.
8
Toxicological significance of azo dye metabolism by human intestinal microbiota.
Front Biosci (Elite Ed). 2012 Jan 1;4(2):568-86. doi: 10.2741/e400.
9
Effects of Orange II and Sudan III azo dyes and their metabolites on Staphylococcus aureus.
J Ind Microbiol Biotechnol. 2011 Oct;38(10):1729-38. doi: 10.1007/s10295-011-0962-3. Epub 2011 Mar 31.

本文引用的文献

1
Molecular cloning, characterisation and ligand-bound structure of an azoreductase from Pseudomonas aeruginosa.
J Mol Biol. 2007 Nov 9;373(5):1213-28. doi: 10.1016/j.jmb.2007.08.048. Epub 2007 Aug 25.
2
Crystal structure of an aerobic FMN-dependent azoreductase (AzoA) from Enterococcus faecalis.
Arch Biochem Biophys. 2007 Jul 1;463(1):68-77. doi: 10.1016/j.abb.2007.03.003. Epub 2007 Mar 30.
4
Three-dimensional structure of AzoR from Escherichia coli. An oxidereductase conserved in microorganisms.
J Biol Chem. 2006 Jul 21;281(29):20567-76. doi: 10.1074/jbc.M513345200. Epub 2006 May 9.
5
Recent advances in azo dye degrading enzyme research.
Curr Protein Pept Sci. 2006 Apr;7(2):101-11. doi: 10.2174/138920306776359786.
8
Diversity of the human intestinal microbial flora.
Science. 2005 Jun 10;308(5728):1635-8. doi: 10.1126/science.1110591. Epub 2005 Apr 14.
9
SuperPose: a simple server for sophisticated structural superposition.
Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W590-4. doi: 10.1093/nar/gkh477.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验