Nukaga Michiyosi, Bethel Christopher R, Thomson Jodi M, Hujer Andrea M, Distler Anne, Anderson Vernon E, Knox James R, Bonomo Robert A
Faculty of Pharmaceutical Sciences, Josai International University, Togane City, Chiba 283-8555, Japan.
J Am Chem Soc. 2008 Sep 24;130(38):12656-62. doi: 10.1021/ja7111146. Epub 2008 Aug 30.
Carbapenem antibiotics are often the "last resort" in the treatment of infections caused by bacteria resistant to penicillins and cephalosporins. To understand why meropenem is resistant to hydrolysis by the SHV-1 class A beta-lactamase, the atomic structure of meropenem inactivated SHV-1 was solved to 1.05 A resolution. Two conformations of the Ser70 acylated intermediate are observed in the SHV-1-meropenem complex; the meropenem carbonyl oxygen atom of the acyl-enzyme is in the oxyanion hole in one conformation, while in the other conformation it is not. Although the structures of the SHV-1 apoenzyme and the SHV-1-meropenem complex are very similar (0.29 A rmsd for Calpha atoms), the orientation of the conserved Ser130 is different. Notably, the Ser130-OH group of the SHV-1-meropenem complex is directed toward Lys234Nz, while the Ser130-OH of the apo enzyme is oriented toward the Lys73 amino group. This altered position may affect proton transfer via Ser130 and the rate of hydrolysis. A most intriguing finding is the crystallographic detection of protonation of the Glu166 known to be involved in the deacylation mechanism. The critical deacylation water molecule has an additional hydrogen-bonding interaction with the OH group of meropenem's 6alpha-1 R-hydroxyethyl substituent. This interaction may weaken the nucleophilicity and/or change the direction of the lone pair of electrons of the water molecule and result in poor turnover of meropenem by the SHV-1 beta-lactamase. Using timed mass spectrometry, we further show that meropenem is covalently attached to SHV-1 beta-lactamase for at least 60 min. These observations explain key properties of meropenem's ability to resist hydrolysis by SHV-1 and lead to important insights regarding future carbapenem and beta-lactamase inhibitor design.
碳青霉烯类抗生素通常是治疗由对青霉素和头孢菌素耐药的细菌引起的感染的“最后手段”。为了理解美罗培南为何对SHV-1 A类β-内酰胺酶的水解具有抗性,解析了美罗培南使SHV-1失活后的原子结构,分辨率达到1.05埃。在SHV-1-美罗培南复合物中观察到Ser70酰化中间体的两种构象;酰基酶的美罗培南羰基氧原子在一种构象中位于氧负离子孔中,而在另一种构象中则不在。尽管SHV-1脱辅基酶和SHV-1-美罗培南复合物的结构非常相似(α碳原子的均方根偏差为0.29埃),但保守的Ser130的取向不同。值得注意的是,SHV-1-美罗培南复合物的Ser130-OH基团指向Lys234Nz,而脱辅基酶的Ser130-OH则朝向Lys73氨基。这种位置的改变可能会影响通过Ser130的质子转移以及水解速率。一个最有趣的发现是晶体学检测到已知参与脱酰化机制的Glu166的质子化。关键的脱酰化水分子与美罗培南6α-1R-羟乙基取代基的OH基团有额外的氢键相互作用。这种相互作用可能会削弱亲核性和/或改变水分子孤对电子的方向,导致SHV-1β-内酰胺酶对美罗培南的周转不良。使用定时质谱法,我们进一步表明美罗培南与SHV-1β-内酰胺酶共价结合至少60分钟。这些观察结果解释了美罗培南抵抗SHV-1水解能力的关键特性,并为未来碳青霉烯类和β-内酰胺酶抑制剂的设计提供了重要见解。