Suppr超能文献

QM/MM 模拟揭示 A 类β-内酰胺酶中碳青霉烯酶活性的决定因素。

QM/MM Simulations Reveal the Determinants of Carbapenemase Activity in Class A β-Lactamases.

机构信息

Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom.

School of Cellular and Molecular Medicine, University of Bristol Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom.

出版信息

ACS Infect Dis. 2022 Aug 12;8(8):1521-1532. doi: 10.1021/acsinfecdis.2c00152. Epub 2022 Jul 25.

Abstract

β-lactam antibiotic resistance in Gram-negative bacteria, primarily caused by β-lactamase enzymes that hydrolyze the β-lactam ring, has become a serious clinical problem. Carbapenems were formerly considered "last resort" antibiotics because they escaped breakdown by most β-lactamases, due to slow deacylation of the acyl-enzyme intermediate. However, an increasing number of Gram-negative bacteria now produce β-lactamases with carbapenemase activity: these efficiently hydrolyze the carbapenem β-lactam ring, severely limiting the treatment of some bacterial infections. Here, we use quantum mechanics/molecular mechanics (QM/MM) simulations of the deacylation reactions of acyl-enzyme complexes of eight β-lactamases of class A (the most widely distributed β-lactamase group) with the carbapenem meropenem to investigate differences between those inhibited by carbapenems (TEM-1, SHV-1, BlaC, and CTX-M-16) and those that hydrolyze them (SFC-1, KPC-2, NMC-A, and SME-1). QM/MM molecular dynamics simulations confirm the two enzyme groups to differ in the preferred acyl-enzyme orientation: carbapenem-inhibited enzymes favor hydrogen bonding of the carbapenem hydroxyethyl group to deacylating water (DW). QM/MM simulations of deacylation give activation free energies in good agreement with experimental hydrolysis rates, correctly distinguishing carbapenemases. For the carbapenem-inhibited enzymes, free energies for deacylation are significantly higher than for the carbapenemases, even when the hydroxyethyl group was restrained to prevent interaction with the DW. Analysis of these simulations, and additional simulations of mutant enzymes, shows how factors including the hydroxyethyl orientation, the active site volume, and architecture (conformations of Asn170 and Asn132; organization of the oxyanion hole; and the Cys69-Cys238 disulfide bond) collectively determine catalytic efficiency toward carbapenems.

摘要

革兰氏阴性菌的β-内酰胺类抗生素耐药性主要由β-内酰胺酶引起,这些酶能水解β-内酰胺环。β-内酰胺酶能水解碳青霉烯类抗生素的酰化酶中间体,使其成为一种严重的临床问题。碳青霉烯类抗生素曾被认为是“最后手段”的抗生素,因为它们逃脱了大多数β-内酰胺酶的破坏。然而,越来越多的革兰氏阴性菌现在产生具有碳青霉烯酶活性的β-内酰胺酶:这些酶有效地水解碳青霉烯类抗生素的β-内酰胺环,严重限制了一些细菌感染的治疗。在这里,我们使用量子力学/分子力学(QM/MM)模拟来研究 8 种 A 类(分布最广泛的β-内酰胺酶组)β-内酰胺酶与碳青霉烯类美罗培南的脱酰反应,以研究受碳青霉烯类(TEM-1、SHV-1、BlaC 和 CTX-M-16)抑制的酶与水解它们的酶(SFC-1、KPC-2、NMC-A 和 SME-1)之间的差异。QM/MM 分子动力学模拟证实,这两组酶在酰化酶的优选取向方面存在差异:受碳青霉烯类抑制的酶有利于碳青霉烯类的羟乙基基团与脱酰化水(DW)形成氢键。脱酰化的 QM/MM 模拟得到的自由能与实验水解速率非常吻合,正确地区分了碳青霉烯酶。对于受碳青霉烯类抑制的酶,脱酰化的自由能明显高于碳青霉烯酶,即使羟乙基基团被限制以防止与 DW 相互作用。对这些模拟的分析以及对突变酶的额外模拟表明,包括羟乙基取向、活性位点体积和结构(Asn170 和 Asn132 的构象;氧阴离子穴的组织;以及 Cys69-Cys238 二硫键)在内的各种因素如何共同决定了对碳青霉烯类抗生素的催化效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95d9/9379904/2bd44da78997/id2c00152_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验