School of Cellular and Molecular Medicine, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom.
Centre for Computational Chemistry, School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, United Kingdom.
J Am Chem Soc. 2023 Apr 5;145(13):7166-7180. doi: 10.1021/jacs.2c12123. Epub 2023 Mar 27.
KPC-2 ( carbapenemase-2) is a globally disseminated serine-β-lactamase (SBL) responsible for extensive β-lactam antibiotic resistance in Gram-negative pathogens. SBLs inactivate β-lactams via a mechanism involving a hydrolytically labile covalent acyl-enzyme intermediate. Carbapenems, the most potent β-lactams, evade the activity of many SBLs by forming long-lived inhibitory acyl-enzymes; however, carbapenemases such as KPC-2 efficiently deacylate carbapenem acyl-enzymes. We present high-resolution (1.25-1.4 Å) crystal structures of KPC-2 acyl-enzymes with representative penicillins (ampicillin), cephalosporins (cefalothin), and carbapenems (imipenem, meropenem, and ertapenem) obtained utilizing an isosteric deacylation-deficient mutant (E166Q). The mobility of the Ω-loop (residues 165-170) negatively correlates with antibiotic turnover rates (), highlighting the role of this region in positioning catalytic residues for efficient hydrolysis of different β-lactams. Carbapenem-derived acyl-enzyme structures reveal the predominance of the Δ1-(2) imine rather than the Δ2 enamine tautomer. Quantum mechanics/molecular mechanics molecular dynamics simulations of KPC-2:meropenem acyl-enzyme deacylation used an adaptive string method to differentiate the reactivity of the two isomers. These identify the Δ1-(2) isomer as having a significantly (7 kcal/mol) higher barrier than the Δ2 tautomer for the (rate-determining) formation of the tetrahedral deacylation intermediate. Deacylation is therefore likely to proceed predominantly from the Δ2, rather than the Δ1-(2) acyl-enzyme, facilitated by tautomer-specific differences in hydrogen-bonding networks involving the carbapenem C-3 carboxylate and the deacylating water and stabilization by protonated N-4, accumulating a negative charge on the Δ2 enamine-derived oxyanion. Taken together, our data show how the flexible Ω-loop helps confer broad-spectrum activity upon KPC-2, while carbapenemase activity stems from efficient deacylation of the Δ2-enamine acyl-enzyme tautomer.
KPC-2(碳青霉烯酶-2)是一种在全球范围内传播的丝氨酸β-内酰胺酶(SBL),可导致革兰氏阴性病原体对广泛的β-内酰胺类抗生素产生耐药性。SBL 通过涉及水解不稳定的共价酰基-酶中间产物的机制使β-内酰胺类抗生素失活。碳青霉烯类抗生素是最有效的β-内酰胺类抗生素,通过形成持久的抑制性酰基-酶来逃避许多 SBL 的活性;然而,像 KPC-2 这样的碳青霉烯酶可以有效地使碳青霉烯类抗生素的酰基-酶脱酰基。我们利用等排去酰化缺陷突变体(E166Q)获得了 KPC-2 酰-酶与代表性青霉素(氨苄西林)、头孢菌素(头孢噻吩)和碳青霉烯类抗生素(亚胺培南、美罗培南和厄他培南)的高分辨率(1.25-1.4Å)晶体结构。Ω-环(残基 165-170)的迁移率与抗生素周转率呈负相关(),突出了该区域在定位催化残基以有效水解不同β-内酰胺类抗生素方面的作用。碳青霉烯衍生的酰-酶结构揭示了Δ1-(2)亚胺而不是Δ2烯胺互变异构体的优势。使用自适应字符串方法对 KPC-2:美罗培南酰-酶去酰化的量子力学/分子力学分子动力学模拟区分了两个互变异构体的反应性。这些发现表明,与Δ2 互变异构体相比,Δ1-(2)互变异构体形成(速率决定)四面体去酰化中间产物的势垒显著升高(7 kcal/mol)。因此,去酰化可能主要从Δ2 酰-酶进行,而不是从Δ1-(2)酰-酶进行,这是由于涉及碳青霉烯 C-3 羧酸盐和去酰化水的互变异构体特异性氢键网络以及通过质子化 N-4 稳定的差异所促进的,在Δ2 烯胺衍生的氧阴离子上积累了负电荷。综上所述,我们的数据表明,灵活的Ω-环如何帮助 KPC-2 获得广谱活性,而碳青霉烯酶活性源于对Δ2-烯胺酰-酶互变异构体的有效去酰化。