Suppr超能文献

动态自推进粒子模型中感官盲区对研磨行为的影响。

Effect of sensory blind zones on milling behavior in a dynamic self-propelled particle model.

作者信息

Newman Jonathan P, Sayama Hiroki

机构信息

Department of Bioengineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jul;78(1 Pt 1):011913. doi: 10.1103/PhysRevE.78.011913. Epub 2008 Jul 22.

Abstract

Emergent pattern formation in self-propelled particle (SPP) systems is extensively studied because it addresses a range of swarming phenomena that occur without leadership. Here we present a dynamic SPP model in which a sensory blind zone is introduced into each particle's zone of interaction. Using numerical simulations, we discovered that the degradation of milling patterns with increasing blind zone ranges undergoes two distinct transitions, including a spatially non-homogeneous transition that involves cessation of particles' motion caused by broken symmetries in the interaction fields. Our results also show the necessity of nearly complete panoramic sensory ability for milling behavior to emerge in dynamic SPP models, suggesting a possible relationship between collective behavior and the sensory systems of biological organisms.

摘要

自驱动粒子(SPP)系统中的涌现模式形成受到广泛研究,因为它涉及一系列无需领导者即可发生的群体现象。在此,我们提出了一种动态SPP模型,其中在每个粒子的相互作用区域引入了一个传感盲区。通过数值模拟,我们发现随着盲区范围增加,研磨模式的退化经历了两个不同的转变,包括一个空间非均匀转变,该转变涉及由于相互作用场中的对称性破缺导致粒子运动停止。我们的结果还表明,在动态SPP模型中,几乎完全的全景传感能力对于研磨行为的出现是必要的,这暗示了集体行为与生物有机体传感系统之间可能存在的关系。

相似文献

1
Effect of sensory blind zones on milling behavior in a dynamic self-propelled particle model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jul;78(1 Pt 1):011913. doi: 10.1103/PhysRevE.78.011913. Epub 2008 Jul 22.
2
Swarming in three dimensions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Sep;78(3 Pt 1):031927. doi: 10.1103/PhysRevE.78.031927. Epub 2008 Sep 30.
3
Making noise: emergent stochasticity in collective motion.
J Theor Biol. 2010 Dec 7;267(3):292-9. doi: 10.1016/j.jtbi.2010.08.034. Epub 2010 Sep 8.
4
Time correlation function in systems with two coexisting biological species.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jun;77(6 Pt 1):061909. doi: 10.1103/PhysRevE.77.061909. Epub 2008 Jun 12.
5
Singular perturbation analysis of a reduced model for collective motion: a renormalization group approach.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Mar;83(3 Pt 1):031127. doi: 10.1103/PhysRevE.83.031127. Epub 2011 Mar 22.
6
Nonlinear stability of vortex formation in swarms of interacting particles.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jul;78(1 Pt 1):012903. doi: 10.1103/PhysRevE.78.012903. Epub 2008 Jul 29.
7
Active and passive particles: modeling beads in a bacterial bath.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Jul;64(1 Pt 1):011902. doi: 10.1103/PhysRevE.64.011902. Epub 2001 Jun 12.
8
Nonequilibrium clustering of self-propelled rods.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 1):030904. doi: 10.1103/PhysRevE.74.030904. Epub 2006 Sep 15.
9
Fluctuations and pattern formation in self-propelled particles.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jun;81(6 Pt 1):061916. doi: 10.1103/PhysRevE.81.061916. Epub 2010 Jun 16.
10
Noise-induced vortex reversal of self-propelled particles.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 1):041122. doi: 10.1103/PhysRevE.86.041122. Epub 2012 Oct 12.

引用本文的文献

1
Extracting cellular automaton rules from physical Langevin equation models for single and collective cell migration.
J Math Biol. 2017 Nov;75(5):1075-1100. doi: 10.1007/s00285-017-1106-9. Epub 2017 Feb 27.
2
Collective behaviour in vertebrates: a sensory perspective.
R Soc Open Sci. 2016 Nov 16;3(11):160377. doi: 10.1098/rsos.160377. eCollection 2016 Nov.
3
From behavioural analyses to models of collective motion in fish schools.
Interface Focus. 2012 Dec 6;2(6):693-707. doi: 10.1098/rsfs.2012.0033. Epub 2012 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验