Suppr超能文献

制造噪音:集体运动中的涌现随机性行为。

Making noise: emergent stochasticity in collective motion.

机构信息

York Centre for Complex Systems Analysis, University of York, PO Box 373, York YO10 5YW, United Kingdom.

出版信息

J Theor Biol. 2010 Dec 7;267(3):292-9. doi: 10.1016/j.jtbi.2010.08.034. Epub 2010 Sep 8.

Abstract

Individual-based models of self-propelled particles (SPPs) are a popular and promising approach to explain features of the collective motion of animal aggregations. Many models that capture some features of group motion have been suggested but a common framework has yet to emerge. Key to all of these models is the inclusion of "noise" or stochastic errors in the individual behaviour of the SPPs. Here, we present a fully stochastic SPP model in one dimension that demonstrates a new way of introducing noise into SPP models whilst preserving emergent behaviours of previous models such as coherent groups and spontaneous direction switching. This purely individual-to-individual, local model is related to previous models in the literature and can easily be extended to higher dimensions. Its coarse-grained behaviour qualitatively reproduces recently reported locust movement data. We suggest that our approach offers an alternative to current reasoning about model construction and has the potential to offer mechanistic explanations for emergent properties of animal groups in nature.

摘要

基于个体的自主运动粒子(SPP)模型是一种解释动物聚集集体运动特征的流行且有前途的方法。已经提出了许多能够捕捉群体运动某些特征的模型,但尚未出现通用框架。所有这些模型的关键是在 SPP 的个体行为中包含“噪声”或随机误差。在这里,我们在一维中提出了一个完全随机的 SPP 模型,展示了一种将噪声引入 SPP 模型的新方法,同时保留了以前模型的突现行为,例如相干群体和自发方向切换。这个纯粹个体到个体的局部模型与文献中的先前模型有关,并且可以轻松扩展到更高维度。它的粗粒度行为定性地再现了最近报道的蝗虫运动数据。我们认为,我们的方法为当前的模型构建推理提供了一种替代方法,并且有可能为自然界中动物群体的突现特性提供机械解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验