Lemmens D, Wouters M, Tempere J, Foulon S
TFVS, Universiteit Antwerpen, Universiteitsplein 1, 2610 Antwerpen, Belgium.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jul;78(1 Pt 2):016101. doi: 10.1103/PhysRevE.78.016101. Epub 2008 Jul 3.
We present a path integral method to derive closed-form solutions for option prices in a stochastic volatility model. The method is explained in detail for the pricing of a plain vanilla option. The flexibility of our approach is demonstrated by extending the realm of closed-form option price formulas to the case where both the volatility and interest rates are stochastic. This flexibility is promising for the treatment of exotic options. Our analytical formulas are tested with numerical Monte Carlo simulations.
我们提出一种路径积分方法,以推导随机波动率模型中期权价格的闭式解。该方法针对普通香草期权定价进行了详细解释。通过将闭式期权价格公式的范围扩展到波动率和利率均为随机的情况,展示了我们方法的灵活性。这种灵活性对于奇异期权的处理很有前景。我们的解析公式通过数值蒙特卡罗模拟进行了测试。