Suppr超能文献

用于封闭形式期权定价公式的路径积分方法及其在随机波动率和利率模型中的应用。

Path integral approach to closed-form option pricing formulas with applications to stochastic volatility and interest rate models.

作者信息

Lemmens D, Wouters M, Tempere J, Foulon S

机构信息

TFVS, Universiteit Antwerpen, Universiteitsplein 1, 2610 Antwerpen, Belgium.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jul;78(1 Pt 2):016101. doi: 10.1103/PhysRevE.78.016101. Epub 2008 Jul 3.

Abstract

We present a path integral method to derive closed-form solutions for option prices in a stochastic volatility model. The method is explained in detail for the pricing of a plain vanilla option. The flexibility of our approach is demonstrated by extending the realm of closed-form option price formulas to the case where both the volatility and interest rates are stochastic. This flexibility is promising for the treatment of exotic options. Our analytical formulas are tested with numerical Monte Carlo simulations.

摘要

我们提出一种路径积分方法,以推导随机波动率模型中期权价格的闭式解。该方法针对普通香草期权定价进行了详细解释。通过将闭式期权价格公式的范围扩展到波动率和利率均为随机的情况,展示了我们方法的灵活性。这种灵活性对于奇异期权的处理很有前景。我们的解析公式通过数值蒙特卡罗模拟进行了测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验