Zhang Yuantao, Kuen Kwok Yue
Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China.
J Appl Stat. 2019 Dec 24;47(11):1936-1956. doi: 10.1080/02664763.2019.1703915. eCollection 2020.
The saddlepoint approximation formulas provide versatile tools for analytic approximation of the tail expectation of a random variable by approximating the complex Laplace integral of the tail expectation expressed in terms of the cumulant generating function of the random variable. We generalize the saddlepoint approximation formulas for calculating tail expectations from the usual Gaussian base distribution to an arbitrary base distribution. Specific discussion is presented on the criteria of choosing the base distribution that fits better the underlying distribution. Numerical performance and comparison of accuracy are made among different saddlepoint approximation formulas. Improved accuracy of the saddlepoint approximations to tail expectations is revealed when proper base distributions are chosen. We also demonstrate enhanced accuracy of the generalized saddlepoint approximation formulas under non-Gaussian base distributions in pricing European options on continuous integrated variance under the Heston stochastic volatility model.
鞍点近似公式提供了通用工具,通过近似以随机变量的累积生成函数表示的尾部期望的复拉普拉斯积分,来对随机变量的尾部期望进行解析近似。我们将用于计算尾部期望的鞍点近似公式从通常的高斯基础分布推广到任意基础分布。针对选择更适合基础分布的基础分布的标准进行了具体讨论。对不同鞍点近似公式进行了数值性能和精度比较。当选择合适的基础分布时,揭示了鞍点对尾部期望近似的精度提高。我们还证明了在赫斯顿随机波动率模型下对连续积分方差的欧式期权定价时,非高斯基础分布下广义鞍点近似公式的精度提高。