Suppr超能文献

无标度网络上的玻色子反应扩散过程。

Bosonic reaction-diffusion processes on scale-free networks.

作者信息

Baronchelli Andrea, Catanzaro Michele, Pastor-Satorras Romualdo

机构信息

Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Campus Nord B4, 08034 Barcelona, Spain.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jul;78(1 Pt 2):016111. doi: 10.1103/PhysRevE.78.016111. Epub 2008 Jul 23.

Abstract

Reaction-diffusion processes can be adopted to model a large number of dynamics on complex networks, such as transport processes or epidemic outbreaks. In most cases, however, they have been studied from a fermionic perspective, in which each vertex can be occupied by at most one particle. While still useful, this approach suffers from some drawbacks, the most important probably being the difficulty to implement reactions involving more than two particles simultaneously. Here we develop a general framework for the study of bosonic reaction-diffusion processes on complex networks, in which there is no restriction on the number of interacting particles that a vertex can host. We describe these processes theoretically by means of continuous-time heterogeneous mean-field theory and divide them into two main classes: steady-state and monotonously decaying processes. We analyze specific examples of both behaviors within the class of one-species processes, comparing the results (whenever possible) with the corresponding fermionic counterparts. We find that the time evolution and critical properties of the particle density are independent of the fermionic or bosonic nature of the process, while differences exist in the functional form of the density of occupied vertices in a given degree class k . We implement a continuous-time Monte Carlo algorithm, well suited for general bosonic simulations, which allows us to confirm the analytical predictions formulated within mean-field theory. Our results, at both the theoretical and numerical levels, can be easily generalized to tackle more complex, multispecies, reaction-diffusion processes and open a promising path for a general study and classification of this kind of dynamical systems on complex networks.

摘要

反应扩散过程可用于对复杂网络上的大量动力学过程进行建模,比如传输过程或疫情爆发。然而,在大多数情况下,人们从费米子的角度对其进行研究,即每个顶点最多只能被一个粒子占据。虽然这种方法仍然有用,但它存在一些缺点,其中最重要的可能是难以实现同时涉及两个以上粒子的反应。在此,我们开发了一个用于研究复杂网络上玻色子反应扩散过程的通用框架,其中对于一个顶点能够容纳的相互作用粒子数量没有限制。我们通过连续时间非均匀平均场理论从理论上描述这些过程,并将它们分为两大类:稳态过程和单调衰减过程。我们分析了单物种过程类别中这两种行为的具体示例,并尽可能将结果与相应的费米子对应情况进行比较。我们发现粒子密度的时间演化和临界性质与过程的费米子或玻色子性质无关,而在给定度类(k)中被占据顶点密度的函数形式存在差异。我们实现了一种连续时间蒙特卡罗算法,它非常适合一般的玻色子模拟,这使我们能够证实平均场理论中提出的解析预测。我们在理论和数值层面的结果都可以很容易地推广,以处理更复杂的多物种反应扩散过程,并为在复杂网络上对这类动力系统进行全面研究和分类开辟了一条有前景的道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验