Maeno Yoshiharu
Social Design Group, Tokyo, Japan.
Physica A. 2010 Nov 1;389(21):4755-4768. doi: 10.1016/j.physa.2010.07.014. Epub 2010 Jul 16.
Stochasticity and spatial heterogeneity are of great interest recently in studying the spread of an infectious disease. The presented method solves an inverse problem to discover the effectively decisive topology of a heterogeneous network and reveal the transmission parameters which govern the stochastic spreads over the network from a dataset on an infectious disease outbreak in the early growth phase. Populations in a combination of epidemiological compartment models and a meta-population network model are described by stochastic differential equations. Probability density functions are derived from the equations and used for the maximal likelihood estimation of the topology and parameters. The method is tested with computationally synthesized datasets and the WHO dataset on the SARS outbreak.
最近,随机性和空间异质性在研究传染病传播方面备受关注。所提出的方法解决了一个反问题,以发现异质网络的有效决定性拓扑结构,并从传染病早期爆发阶段的数据集揭示控制网络上随机传播的传播参数。流行病学隔间模型和元种群网络模型相结合的种群由随机微分方程描述。从这些方程中导出概率密度函数,并用于拓扑结构和参数的最大似然估计。该方法通过计算合成数据集和世界卫生组织关于非典爆发的数据集进行了测试。