Suppr超能文献

瑞利-迈尔斯科夫不稳定性中气泡竞争的定量建模

Quantitative modeling of bubble competition in Richtmyer-Meshkov instability.

作者信息

Sohn Sung-Ik

机构信息

Department of Mathematics, Kangnung National University, Kangnung 210-702, Korea.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jul;78(1 Pt 2):017302. doi: 10.1103/PhysRevE.78.017302. Epub 2008 Jul 3.

Abstract

We present a quantitative model for the evolution of single and multiple bubbles in the Richtmyer-Meshkov (RM) instability. The higher-order solutions for a single-mode bubble are obtained, and distinctions between RM and Rayleigh-Taylor bubbles are investigated. The results for multiple-bubble competition from the model shows that the higher-order correction to the solution of the bubble curvature has a large influence on the growth rate of the RM bubble front. The model predicts that the bubble front of RM mixing grows as h approximately ttheta with theta approximately (0.3-0.35)+/-0.02 .

摘要

我们提出了一个用于描述瑞利 - 迈斯科夫(RM)不稳定性中单个和多个气泡演化的定量模型。得到了单模气泡的高阶解,并研究了RM气泡与瑞利 - 泰勒气泡之间的差异。该模型给出的多气泡竞争结果表明,对气泡曲率解的高阶修正对RM气泡前沿的增长率有很大影响。该模型预测,RM混合的气泡前沿以h近似于t的θ次方的形式增长,其中θ约为(0.3 - 0.35)±0.02 。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验