Suppr超能文献

用于瑞利-泰勒和里希特迈尔-梅什科夫不稳定性的涡旋模型与模拟

Vortex model and simulations for Rayleigh-Taylor and Richtmyer-Meshkov instabilities.

作者信息

Sohn Sung-Ik

机构信息

School of Information Engineering, Tongmyong University of Information Technology, Pusan 608-711, Republic of Korea.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Mar;69(3 Pt 2):036703. doi: 10.1103/PhysRevE.69.036703. Epub 2004 Mar 30.

Abstract

The vortex method is applied to simulations of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities. The numerical results from the vortex method agree well with analytic solutions and other numerical results. The bubble velocity in the RT instability converges to a constant limit, and in the RM instability, the bubble and spike have decaying growth rates, except for the spike of infinite density ratio. For both RT and RM instabilities, bubbles attain constant asymptotic curvatures. It is found that, for the same density ratio, the RT bubble has slightly larger asymptotic curvature than the RM bubble. The vortex sheet strength of the RM interface has different behavior than that of the RT interface. We also examine the validity of theoretical models by comparing the numerical results with theoretical predictions.

摘要

涡旋方法被应用于瑞利 - 泰勒(RT)不稳定性和里希特迈尔 - 梅什科夫(RM)不稳定性的模拟。涡旋方法的数值结果与解析解以及其他数值结果吻合良好。在RT不稳定性中,气泡速度收敛到一个恒定极限,而在RM不稳定性中,除了无限密度比的尖峰外,气泡和尖峰的增长率呈衰减趋势。对于RT和RM不稳定性,气泡都能达到恒定的渐近曲率。研究发现,在相同密度比下,RT气泡的渐近曲率比RM气泡略大。RM界面的涡旋片强度与RT界面的行为不同。我们还通过将数值结果与理论预测进行比较来检验理论模型的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验