Sohn Sung-Ik
School of Information Engineering, Tongmyong University of Information Technology, Pusan 608-711, Republic of Korea.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Mar;69(3 Pt 2):036703. doi: 10.1103/PhysRevE.69.036703. Epub 2004 Mar 30.
The vortex method is applied to simulations of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities. The numerical results from the vortex method agree well with analytic solutions and other numerical results. The bubble velocity in the RT instability converges to a constant limit, and in the RM instability, the bubble and spike have decaying growth rates, except for the spike of infinite density ratio. For both RT and RM instabilities, bubbles attain constant asymptotic curvatures. It is found that, for the same density ratio, the RT bubble has slightly larger asymptotic curvature than the RM bubble. The vortex sheet strength of the RM interface has different behavior than that of the RT interface. We also examine the validity of theoretical models by comparing the numerical results with theoretical predictions.
涡旋方法被应用于瑞利 - 泰勒(RT)不稳定性和里希特迈尔 - 梅什科夫(RM)不稳定性的模拟。涡旋方法的数值结果与解析解以及其他数值结果吻合良好。在RT不稳定性中,气泡速度收敛到一个恒定极限,而在RM不稳定性中,除了无限密度比的尖峰外,气泡和尖峰的增长率呈衰减趋势。对于RT和RM不稳定性,气泡都能达到恒定的渐近曲率。研究发现,在相同密度比下,RT气泡的渐近曲率比RM气泡略大。RM界面的涡旋片强度与RT界面的行为不同。我们还通过将数值结果与理论预测进行比较来检验理论模型的有效性。