Suppr超能文献

谱偏倚——临床医生在应用诊断试验研究时为何需谨慎。

Spectrum bias--why clinicians need to be cautious when applying diagnostic test studies.

作者信息

Willis Brian H

机构信息

Health Methodology Group, University of Manchester, Manchester, UK.

出版信息

Fam Pract. 2008 Oct;25(5):390-6. doi: 10.1093/fampra/cmn051. Epub 2008 Sep 1.

Abstract

When applying study results to their practice, the clinician is constrained by a number of factors, perhaps none more important than spectrum bias, which describes the effect a change in patient case mix may have on the performance of a test. Although the literature contains notable examples of spectrum bias, the emphasis has been to demonstrate its existence and its implications on study design rather than how it affects the clinician. Here a definition is proposed before considering it from a GP's perspective. As a patient's probability of disease is in part determined by the test's result, having reliable estimates of a test's performance is imperative to making good decisions on patient management. Knowing how the test performs on a patient usually means knowing its performance within a particular subgroup. Unfortunately, studies tend to report weighted average estimates of performance across broad populations. Such estimates may be inaccurate at an individual level and at a population level with the overall performance of the test in practice varying significantly from the average estimate reported, owing to differing case mixes. To avert such problems, investigators should design studies to evaluate tests over all relevant subgroups, and where this is not possible, to be explicit about the case mix in the study sample. Furthermore, GPs should endeavour to know both individual patients and practice populations as a whole in terms of demographics and co-morbidities before applying study results to their patients.

摘要

在将研究结果应用于临床实践时,临床医生受到多种因素的限制,其中可能没有比谱偏倚更重要的因素了,谱偏倚描述了患者病例组合的变化可能对检验性能产生的影响。尽管文献中有谱偏倚的显著例子,但重点一直是证明其存在及其对研究设计的影响,而不是它如何影响临床医生。在此,在从全科医生的角度考虑之前,先提出一个定义。由于患者的疾病概率部分取决于检验结果,因此对检验性能进行可靠估计对于做出良好的患者管理决策至关重要。了解检验在患者身上的表现通常意味着了解其在特定亚组中的表现。不幸的是,研究往往报告广泛人群中检验性能的加权平均估计值。由于病例组合不同,这些估计值在个体层面和人群层面可能不准确,实际中检验的总体性能与报告的平均估计值有很大差异。为避免此类问题,研究人员应设计研究来评估所有相关亚组中的检验,若无法做到这一点,则应明确研究样本中的病例组合。此外,全科医生在将研究结果应用于患者之前,应努力从人口统计学和共病情况方面了解个体患者以及整个实践人群。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验