Suppr超能文献

青鳉(Oryzias latipes)原肠早期胚胎的膜微区是外包过程中E-钙黏蛋白和碳水化合物介导的细胞间相互作用的平台。

Membrane microdomains from early gastrula embryos of medaka, Oryzias latipes, are a platform of E-cadherin- and carbohydrate-mediated cell-cell interactions during epiboly.

作者信息

Adachi Tomoko, Sato Chihiro, Kishi Yasunori, Totani Kazuhide, Murata Takeomi, Usui Taichi, Kitajima Ken

机构信息

Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601, Japan.

出版信息

Glycoconj J. 2009 Apr;26(3):285-99. doi: 10.1007/s10719-008-9184-y. Epub 2008 Sep 3.

Abstract

Formation of membrane microdomain is critical for cell migration (epiboly) during gastrulation of medaka fish [Adachi et al. (Biochem. Biophys. Res. Commun. 358:848-853, 2007)]. In this study, we characterized membrane microdomain from gastrula embryos to understand its roles in epiboly. A cell adhesion molecule (E-cadherin), its associated protein (beta-catenin), transducer proteins (PLCgamma, cSrc), and a cytoskeleton protein (beta-actin) were enriched in the membrane microdomain. Le(X)-containing glycolipids and glycoproteins (Le(X)-gp) were exclusively enriched in the membrane microdomain. Interestingly, the isolated membrane microdomain had the ability to bind to each other in the presence of Ca(2+). This membrane microdomain binding was achieved through the E-cadherin homophilic and the Le(X)-glycan-mediated interactions. E-cadherin and Le(X)-gp were co-localized on the same membrane microdomain, suggesting that these two interactions are operative at the same time. Thus, the membrane microdomain functions as a platform of the E-cadherin- and Le(X)-glycan-mediated cell adhesion and signal transduction.

摘要

膜微区的形成对于青鳉鱼原肠胚形成期间的细胞迁移(外包)至关重要[足立等人(《生物化学与生物物理研究通讯》358:848 - 853,2007年)]。在本研究中,我们对原肠胚胚胎的膜微区进行了表征,以了解其在外包过程中的作用。一种细胞粘附分子(E - 钙粘蛋白)、其相关蛋白(β - 连环蛋白)、转导蛋白(PLCγ、cSrc)和一种细胞骨架蛋白(β - 肌动蛋白)在膜微区中富集。含Le(X)的糖脂和糖蛋白(Le(X) - gp)仅在膜微区中富集。有趣的是,分离出的膜微区在Ca(2+)存在的情况下能够相互结合。这种膜微区结合是通过E - 钙粘蛋白的同源性和Le(X) - 聚糖介导的相互作用实现的。E - 钙粘蛋白和Le(X) - gp共定位于同一膜微区,表明这两种相互作用同时起作用。因此,膜微区作为E - 钙粘蛋白和Le(X) - 聚糖介导的细胞粘附和信号转导的平台发挥作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验