Masri Bernard, Salahpour Ali, Didriksen Michael, Ghisi Valentina, Beaulieu Jean-Martin, Gainetdinov Raul R, Caron Marc G
Departments of Cell Biology, Medicine and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13656-61. doi: 10.1073/pnas.0803522105. Epub 2008 Sep 3.
Since the unexpected discovery of the antipsychotic activity of chlorpromazine, a variety of therapeutic agents have been developed for the treatment of schizophrenia. Despite differences in their activities at various neurotransmitter systems, all clinically effective antipsychotics share the ability to interact with D2 class dopamine receptors (D2R). D2R mediate their physiological effects via both G protein-dependent and independent (beta-arrestin 2-dependent) signaling, but the role of these D2R-mediated signaling events in the actions of antipsychotics remains unclear. We demonstrate here that while different classes of antipsychotics have complex pharmacological profiles at G protein-dependent D2R long isoform (D2(L)R) signaling, they share the common property of antagonizing dopamine-mediated interaction of D2(L)R with beta-arrestin 2. Using two cellular assays based on a bioluminescence resonance energy transfer (BRET) approach, we demonstrate that a series of antipsychotics including haloperidol, clozapine, aripiprazole, chlorpromazine, quetiapine, olanzapine, risperidone, and ziprasidone all potently antagonize the beta-arrestin 2 recruitment to D2(L)R induced by quinpirole. However, these antipsychotics have various effects on D2(L)R mediated G(i/o) protein activation ranging from inverse to partial agonists and antagonists with highly variable efficacies and potencies at quinpirole-induced cAMP inhibition. These results suggest that the different classes of clinically effective antipsychotics share a common molecular mechanism involving inhibition of D2(L)R/beta-arrestin 2 mediated signaling. Thus, selective targeting of D2(L)R/beta-arrestin 2 interaction and related signaling pathways may provide new opportunities for antipsychotic development.
自从意外发现氯丙嗪的抗精神病活性以来,已经开发了多种治疗药物用于治疗精神分裂症。尽管它们在各种神经递质系统中的活性存在差异,但所有临床有效的抗精神病药物都具有与D2类多巴胺受体(D2R)相互作用的能力。D2R通过G蛋白依赖性和非依赖性(β-抑制蛋白2依赖性)信号传导介导其生理效应,但这些D2R介导的信号事件在抗精神病药物作用中的作用仍不清楚。我们在此证明,虽然不同类别的抗精神病药物在G蛋白依赖性D2R长亚型(D2(L)R)信号传导方面具有复杂的药理学特征,但它们具有共同的特性,即拮抗多巴胺介导的D2(L)R与β-抑制蛋白2的相互作用。使用基于生物发光共振能量转移(BRET)方法的两种细胞分析,我们证明包括氟哌啶醇、氯氮平、阿立哌唑、氯丙嗪、喹硫平、奥氮平、利培酮和齐拉西酮在内的一系列抗精神病药物均能有效拮抗喹吡罗诱导的β-抑制蛋白2募集到D2(L)R。然而,这些抗精神病药物对D2(L)R介导的G(i/o)蛋白激活具有不同的影响,从反向激动剂到部分激动剂和拮抗剂,在喹吡罗诱导的cAMP抑制方面具有高度可变的效力和效能。这些结果表明,不同类别的临床有效抗精神病药物具有共同的分子机制,涉及抑制D2(L)R/β-抑制蛋白2介导的信号传导。因此,选择性靶向D2(L)R/β-抑制蛋白2相互作用及相关信号通路可能为抗精神病药物的开发提供新的机会。