Suppr超能文献

固态人造原子的振幅光谱学。

Amplitude spectroscopy of a solid-state artificial atom.

作者信息

Berns David M, Rudner Mark S, Valenzuela Sergio O, Berggren Karl K, Oliver William D, Levitov Leonid S, Orlando Terry P

机构信息

Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

Nature. 2008 Sep 4;455(7209):51-7. doi: 10.1038/nature07262.

Abstract

The energy-level structure of a quantum system, which has a fundamental role in its behaviour, can be observed as discrete lines and features in absorption and emission spectra. Conventionally, spectra are measured using frequency spectroscopy, whereby the frequency of a harmonic electromagnetic driving field is tuned into resonance with a particular separation between energy levels. Although this technique has been successfully employed in a variety of physical systems, including natural and artificial atoms and molecules, its application is not universally straightforward and becomes extremely challenging for frequencies in the range of tens to hundreds of gigahertz. Here we introduce a complementary approach, amplitude spectroscopy, whereby a harmonic driving field sweeps an artificial atom through the avoided crossings between energy levels at a fixed frequency. Spectroscopic information is obtained from the amplitude dependence of the system's response, thereby overcoming many of the limitations of a broadband-frequency-based approach. The resulting 'spectroscopy diamonds', the regions in parameter space where transitions between specific pairs of levels can occur, exhibit interference patterns and population inversion that serve to distinguish the atom's spectrum. Amplitude spectroscopy provides a means of manipulating and characterizing systems over an extremely broad bandwidth, using only a single driving frequency that may be orders of magnitude smaller than the energy scales being probed.

摘要

量子系统的能级结构在其行为中起着根本性作用,可在吸收光谱和发射光谱中观测为离散的谱线和特征。传统上,光谱是使用频率光谱学来测量的,即通过将谐波电磁驱动场的频率调谐到与特定能级间距发生共振。尽管该技术已在包括天然和人造原子及分子在内的各种物理系统中成功应用,但其应用并非普遍简单,对于几十到几百吉赫兹范围内的频率而言变得极具挑战性。在此,我们引入一种互补方法,即幅度光谱学,通过该方法,谐波驱动场以固定频率使一个人造原子扫过能级之间的避免交叉点。光谱信息是从系统响应的幅度依赖性中获得的,从而克服了基于宽带频率方法的许多局限性。由此产生的“光谱菱形”,即参数空间中特定能级对之间可能发生跃迁的区域,展现出干涉图样和粒子数反转,这些有助于区分原子的光谱。幅度光谱学提供了一种在极宽带宽上操纵和表征系统的方法,仅使用一个可能比所探测的能量尺度小几个数量级的驱动频率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验