Suppr超能文献

在双通道DNA微阵列数据集中寻找差异表达基因:如何提高数据预处理的可靠性。

Finding differentially expressed genes in two-channel DNA microarray datasets: how to increase reliability of data preprocessing.

作者信息

Rotter Ana, Hren Matjaz, Baebler Spela, Blejec Andrej, Gruden Kristina

机构信息

Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia.

出版信息

OMICS. 2008 Sep;12(3):171-82. doi: 10.1089/omi.2008.0032.

Abstract

Due to the great variety of preprocessing tools in two-channel expression microarray data analysis it is difficult to choose the most appropriate one for a given experimental setup. In our study, two independent two-channel inhouse microarray experiments as well as a publicly available dataset were used to investigate the influence of the selection of preprocessing methods (background correction, normalization, and duplicate spots correlation calculation) on the discovery of differentially expressed genes. Here we are showing that both the list of differentially expressed genes and the expression values of selected genes depend significantly on the preprocessing approach applied. The choice of normalization method to be used had the highest impact on the results. We propose a simple but efficient approach to increase the reliability of obtained results, where two normalization methods which are theoretically distinct from one another are used on the same dataset. Then the intersection of results, that is, the lists of differentially expressed genes, is used in order to get a more accurate estimation of the genes that were de facto differentially expressed.

摘要

由于在双通道表达微阵列数据分析中预处理工具种类繁多,因此很难为给定的实验设置选择最合适的工具。在我们的研究中,使用了两个独立的双通道内部微阵列实验以及一个公开可用的数据集,来研究预处理方法(背景校正、标准化和重复点相关性计算)的选择对差异表达基因发现的影响。在这里我们表明,差异表达基因列表以及所选基因的表达值都显著取决于所应用的预处理方法。所使用的标准化方法的选择对结果影响最大。我们提出了一种简单但有效的方法来提高所得结果的可靠性,即在同一数据集上使用两种理论上不同的标准化方法。然后使用结果的交集,即差异表达基因列表,以便更准确地估计实际差异表达的基因。

相似文献

2
The balance of reproducibility, sensitivity, and specificity of lists of differentially expressed genes in microarray studies.
BMC Bioinformatics. 2008 Aug 12;9 Suppl 9(Suppl 9):S10. doi: 10.1186/1471-2105-9-S9-S10.
3
Effect of various normalization methods on Applied Biosystems expression array system data.
BMC Bioinformatics. 2006 Dec 15;7:533. doi: 10.1186/1471-2105-7-533.
4
The statistics of identifying differentially expressed genes in Expresso and TM4: a comparison.
BMC Bioinformatics. 2006 Apr 20;7:215. doi: 10.1186/1471-2105-7-215.
5
Methods for evaluating gene expression from Affymetrix microarray datasets.
BMC Bioinformatics. 2008 Jun 17;9:284. doi: 10.1186/1471-2105-9-284.
6
7
Micro-Analyzer: automatic preprocessing of Affymetrix microarray data.
Comput Methods Programs Biomed. 2013 Aug;111(2):402-9. doi: 10.1016/j.cmpb.2013.04.006. Epub 2013 May 31.
8
A regression-based differential expression detection algorithm for microarray studies with ultra-low sample size.
PLoS One. 2015 Mar 4;10(3):e0118198. doi: 10.1371/journal.pone.0118198. eCollection 2015.
9
Adaptive filtering of microarray gene expression data based on Gaussian mixture decomposition.
BMC Bioinformatics. 2013 Mar 20;14:101. doi: 10.1186/1471-2105-14-101.
10
Gene selection with multiple ordering criteria.
BMC Bioinformatics. 2007 Mar 5;8:74. doi: 10.1186/1471-2105-8-74.

引用本文的文献

本文引用的文献

1
A comparison of background correction methods for two-colour microarrays.
Bioinformatics. 2007 Oct 15;23(20):2700-7. doi: 10.1093/bioinformatics/btm412. Epub 2007 Aug 25.
2
Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks.
Bioinformatics. 2007 Jul 1;23(13):i282-8. doi: 10.1093/bioinformatics/btm201.
5
A mouse stromal response to tumor invasion predicts prostate and breast cancer patient survival.
PLoS One. 2006 Dec 20;1(1):e32. doi: 10.1371/journal.pone.0000032.
7
Statistical challenges in the analysis of two-dimensional difference gel electrophoresis experiments using DeCyder.
Bioinformatics. 2005 Oct 1;21(19):3733-40. doi: 10.1093/bioinformatics/bti612. Epub 2005 Aug 9.
8
Bioinformatic methods for integrating whole-genome expression results into cellular networks.
Drug Discov Today. 2005 May 15;10(10):727-34. doi: 10.1016/S1359-6446(05)03433-1.
9
Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset.
Genome Biol. 2005;6(2):R16. doi: 10.1186/gb-2005-6-2-r16. Epub 2005 Jan 28.
10
Use of within-array replicate spots for assessing differential expression in microarray experiments.
Bioinformatics. 2005 May 1;21(9):2067-75. doi: 10.1093/bioinformatics/bti270. Epub 2005 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验