各种标准化方法对Applied Biosystems表达阵列系统数据的影响。

Effect of various normalization methods on Applied Biosystems expression array system data.

作者信息

Barbacioru Catalin C, Wang Yulei, Canales Roger D, Sun Yongming A, Keys David N, Chan Frances, Poulter Karen A, Samaha Raymond R

机构信息

Molecular Biology Division, Applied Biosystems, Foster City, CA 94404, USA.

出版信息

BMC Bioinformatics. 2006 Dec 15;7:533. doi: 10.1186/1471-2105-7-533.

Abstract

BACKGROUND

DNA microarray technology provides a powerful tool for characterizing gene expression on a genome scale. While the technology has been widely used in discovery-based medical and basic biological research, its direct application in clinical practice and regulatory decision-making has been questioned. A few key issues, including the reproducibility, reliability, compatibility and standardization of microarray analysis and results, must be critically addressed before any routine usage of microarrays in clinical laboratory and regulated areas can occur. In this study we investigate some of these issues for the Applied Biosystems Human Genome Survey Microarrays.

RESULTS

We analyzed the gene expression profiles of two samples: brain and universal human reference (UHR), a mixture of RNAs from 10 cancer cell lines, using the Applied Biosystems Human Genome Survey Microarrays. Five technical replicates in three different sites were performed on the same total RNA samples according to manufacturer's standard protocols. Five different methods, quantile, median, scale, VSN and cyclic loess were used to normalize AB microarray data within each site. 1,000 genes spanning a wide dynamic range in gene expression levels were selected for real-time PCR validation. Using the TaqMan assays data set as the reference set, the performance of the five normalization methods was evaluated focusing on the following criteria: (1) Sensitivity and reproducibility in detection of expression; (2) Fold change correlation with real-time PCR data; (3) Sensitivity and specificity in detection of differential expression; (4) Reproducibility of differentially expressed gene lists.

CONCLUSION

Our results showed a high level of concordance between these normalization methods. This is true, regardless of whether signal, detection, variation, fold change measurements and reproducibility were interrogated. Furthermore, we used TaqMan assays as a reference, to generate TPR and FDR plots for the various normalization methods across the assay range. Little impact is observed on the TP and FP rates in detection of differentially expressed genes. Additionally, little effect was observed by the various normalization methods on the statistical approaches analyzed which indicates a certain robustness of the analysis methods currently in use in the field, particularly when used in conjunction with the Applied Biosystems Gene Expression System.

摘要

背景

DNA微阵列技术为在基因组规模上表征基因表达提供了一个强大的工具。虽然该技术已广泛应用于基于发现的医学和基础生物学研究,但其在临床实践和监管决策中的直接应用受到了质疑。在临床实验室和受监管领域对微阵列进行任何常规使用之前,必须严格解决一些关键问题,包括微阵列分析和结果的可重复性、可靠性、兼容性和标准化。在本研究中,我们针对应用生物系统公司的人类基因组普查微阵列研究了其中的一些问题。

结果

我们使用应用生物系统公司的人类基因组普查微阵列分析了两个样本的基因表达谱:脑样本和通用人类参考样本(UHR,一种来自10种癌细胞系的RNA混合物)。根据制造商的标准方案,对相同的总RNA样本在三个不同地点进行了五次技术重复。在每个地点使用五种不同的方法(分位数、中位数、尺度、VSN和循环局部加权回归)对AB微阵列数据进行归一化。选择了1000个在基因表达水平上具有广泛动态范围的基因进行实时PCR验证。以TaqMan检测数据集作为参考集,重点从以下标准评估这五种归一化方法的性能:(1)表达检测的灵敏度和可重复性;(2)与实时PCR数据的倍数变化相关性;(3)差异表达检测的灵敏度和特异性;(4)差异表达基因列表的可重复性。

结论

我们的结果表明这些归一化方法之间具有高度的一致性。无论对信号、检测、变异、倍数变化测量和可重复性进行何种询问,都是如此。此外,我们以TaqMan检测作为参考,为整个检测范围内的各种归一化方法生成真阳性率(TPR)和错误发现率(FDR)图。在检测差异表达基因时,对真阳性率和假阳性率的影响很小。此外,各种归一化方法对所分析的统计方法影响很小,这表明该领域目前使用的分析方法具有一定的稳健性,特别是与应用生物系统公司的基因表达系统结合使用时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b8/1764432/73319b19831b/1471-2105-7-533-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索