Suppr超能文献

评估物种分布模型预测两栖动物物种丰富度模式的准确性。

Assessing the accuracy of species distribution models to predict amphibian species richness patterns.

作者信息

Pineda Eduardo, Lobo Jorge M

机构信息

Departamento de Biodiversidad y Ecología Animal, Instituto de Ecología, A. C. Apartado Postal 63, Xalapa 91000, Veracruz, Mexico.

出版信息

J Anim Ecol. 2009 Jan;78(1):182-90. doi: 10.1111/j.1365-2656.2008.01471.x. Epub 2008 Sep 3.

Abstract
  1. Evaluating the distribution of species richness where biodiversity is high but has been insufficiently sampled is not an easy task. Species distribution modelling has become a useful approach for predicting their ranges, based on the relationships between species records and environmental variables. Overlapping predictions of individual distributions could be a useful strategy for obtaining estimates of species richness and composition in a region, but these estimates should be evaluated using a proper validation process, which compares the predicted richness values and composition with accurate data from independent sources. 2. In this study, we propose a simple approach to estimate model performance for several distributional predictions generated simultaneously. This approach is particularly suitable when species distribution modelling techniques that require only presence data are used. 3. The individual distributions for the 370 known amphibian species of Mexico were predicted using maxent to model data on their known presence (66,113 presence-only records). Distributions were subsequently overlapped to obtain a prediction of species richness. Accuracy was assessed by comparing the overall species richness values predicted for the region with observed and predicted values from 118 well-surveyed sites, each with an area of c. 100 km(2), which were identified using species accumulation curves and nonparametric estimators. 4. The derived models revealed a remarkable heterogeneity of species richness across the country, provided information about species composition per site and allowed us to obtain a measure of the spatial distribution of prediction errors. Examining the magnitude and location of model inaccuracies, as well as separately assessing errors of both commission and omission, highlights the inaccuracy of the predictions of species distribution models and the need to provide measures of uncertainty along with the model results. 5. The combination of a species distribution modelling method like maxent and species richness estimators offers a useful tool for identifying when the overall pattern provided by all model predictions might be representing the geographical patterns of species richness and composition, regardless of the particular quality or accuracy of the predictions for each individual species.
摘要
  1. 评估生物多样性高但采样不足地区的物种丰富度分布并非易事。基于物种记录与环境变量之间的关系,物种分布建模已成为预测物种分布范围的一种有用方法。对个体分布的重叠预测可能是获取某一地区物种丰富度和组成估计值的有效策略,但这些估计值应通过适当的验证过程进行评估,即将预测的丰富度值和组成与来自独立来源的准确数据进行比较。2. 在本研究中,我们提出了一种简单方法来评估同时生成的多个分布预测的模型性能。当使用仅需要出现数据的物种分布建模技术时,这种方法特别适用。3. 利用最大熵模型(Maxent)对墨西哥已知的370种两栖动物的个体分布进行预测,建模数据为它们已知的出现情况(66,113条仅出现记录)。随后将分布进行重叠以获得物种丰富度的预测值。通过将该地区预测的总体物种丰富度值与118个经过充分调查的地点(每个地点面积约100平方公里)的观测值和预测值进行比较来评估准确性,这些地点是使用物种累积曲线和非参数估计器确定的。4. 得出的模型揭示了该国物种丰富度的显著异质性,提供了每个地点物种组成的信息,并使我们能够获得预测误差空间分布的度量。检查模型不准确的程度和位置,以及分别评估误判和漏判误差,凸显了物种分布模型预测的不准确以及在模型结果中提供不确定性度量的必要性。5. 像最大熵模型这样的物种分布建模方法与物种丰富度估计器相结合,提供了一个有用的工具,可用于确定所有模型预测提供的总体模式何时可能代表物种丰富度和组成的地理模式,而不论每个单独物种预测的具体质量或准确性如何。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验