Suppr超能文献

通过大鼠体感皮层中的周期连接产生节律

Rhythm generation through period concatenation in rat somatosensory cortex.

作者信息

Kramer Mark A, Roopun Anita K, Carracedo Lucy M, Traub Roger D, Whittington Miles A, Kopell Nancy J

机构信息

Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States of America.

出版信息

PLoS Comput Biol. 2008 Sep 5;4(9):e1000169. doi: 10.1371/journal.pcbi.1000169.

Abstract

Rhythmic voltage oscillations resulting from the summed activity of neuronal populations occur in many nervous systems. Contemporary observations suggest that coexistent oscillations interact and, in time, may switch in dominance. We recently reported an example of these interactions recorded from in vitro preparations of rat somatosensory cortex. We found that following an initial interval of coexistent gamma ( approximately 25 ms period) and beta2 ( approximately 40 ms period) rhythms in the superficial and deep cortical layers, respectively, a transition to a synchronous beta1 ( approximately 65 ms period) rhythm in all cortical layers occurred. We proposed that the switch to beta1 activity resulted from the novel mechanism of period concatenation of the faster rhythms: gamma period (25 ms)+beta2 period (40 ms) = beta1 period (65 ms). In this article, we investigate in greater detail the fundamental mechanisms of the beta1 rhythm. To do so we describe additional in vitro experiments that constrain a biologically realistic, yet simplified, computational model of the activity. We use the model to suggest that the dynamic building blocks (or motifs) of the gamma and beta2 rhythms combine to produce a beta1 oscillation that exhibits cross-frequency interactions. Through the combined approach of in vitro experiments and mathematical modeling we isolate the specific components that promote or destroy each rhythm. We propose that mechanisms vital to establishing the beta1 oscillation include strengthened connections between a population of deep layer intrinsically bursting cells and a transition from antidromic to orthodromic spike generation in these cells. We conclude that neural activity in the superficial and deep cortical layers may temporally combine to generate a slower oscillation.

摘要

由神经元群体的总和活动产生的节律性电压振荡发生在许多神经系统中。当代观察表明,共存的振荡相互作用,并且随着时间的推移,优势可能会发生切换。我们最近报道了一个从大鼠体感皮层的体外制备物中记录到的这些相互作用的例子。我们发现,在浅层和深层皮层中分别存在初始的共存伽马(周期约25毫秒)和贝塔2(周期约40毫秒)节律的间隔之后,所有皮层层都过渡到了同步的贝塔1(周期约65毫秒)节律。我们提出,向贝塔1活动的切换是由较快节律的周期拼接这一新机制导致的:伽马周期(25毫秒)+贝塔2周期(40毫秒)=贝塔1周期(65毫秒)。在本文中,我们更详细地研究了贝塔1节律的基本机制。为此,我们描述了额外的体外实验,这些实验限制了一个生物学上现实但简化的活动计算模型。我们使用该模型表明,伽马和贝塔2节律的动态构建块(或模式)结合起来产生了一个表现出跨频率相互作用的贝塔1振荡。通过体外实验和数学建模的结合方法,我们分离出了促进或破坏每种节律的特定成分。我们提出,对建立贝塔1振荡至关重要的机制包括深层内在爆发性细胞群体之间连接的加强以及这些细胞中从逆向到顺向尖峰产生的转变。我们得出结论,浅层和深层皮层中的神经活动可能在时间上结合起来产生较慢的振荡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de99/2518953/af8ba40f1c5d/pcbi.1000169.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验