Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Berlin, Germany.
Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Nat Rev Neurosci. 2024 Sep;25(9):625-642. doi: 10.1038/s41583-024-00845-7. Epub 2024 Aug 1.
Carrying out any everyday task, be it driving in traffic, conversing with friends or playing basketball, requires rapid selection, integration and segregation of stimuli from different sensory modalities. At present, even the most advanced artificial intelligence-based systems are unable to replicate the multisensory processes that the human brain routinely performs, but how neural circuits in the brain carry out these processes is still not well understood. In this Perspective, we discuss recent findings that shed fresh light on the oscillatory neural mechanisms that mediate multisensory integration (MI), including power modulations, phase resetting, phase-amplitude coupling and dynamic functional connectivity. We then consider studies that also suggest multi-timescale dynamics in intrinsic ongoing neural activity and during stimulus-driven bottom-up and cognitive top-down neural network processing in the context of MI. We propose a new concept of MI that emphasizes the critical role of neural dynamics at multiple timescales within and across brain networks, enabling the simultaneous integration, segregation, hierarchical structuring and selection of information in different time windows. To highlight predictions from our multi-timescale concept of MI, real-world scenarios in which multi-timescale processes may coordinate MI in a flexible and adaptive manner are considered.
执行任何日常任务,无论是在交通中驾驶、与朋友交谈还是打篮球,都需要快速选择、整合和分离来自不同感觉模态的刺激。目前,即使是最先进的基于人工智能的系统也无法复制人类大脑常规执行的多感觉过程,但大脑中的神经回路如何执行这些过程仍不清楚。在这篇观点文章中,我们讨论了最近的发现,这些发现为介导多感觉整合 (MI) 的振荡神经机制提供了新的见解,包括功率调制、相位重置、相位-幅度耦合和动态功能连接。然后,我们考虑了一些研究,这些研究还表明,在 MI 背景下,内在持续神经活动以及刺激驱动的自上而下和认知自上而下神经网络处理过程中存在多时间尺度动力学。我们提出了一个新的 MI 概念,强调了在脑网络内和跨脑网络的多个时间尺度上的神经动力学的关键作用,从而能够在不同的时间窗口中同时整合、分离、分层构建和选择信息。为了突出我们的多时间尺度 MI 概念的预测,考虑了现实世界的场景,其中多时间尺度过程可能以灵活和自适应的方式协调 MI。