Suppr超能文献

表达肺癌特异性EGFR和KRAS等位基因的细胞中酪氨酸磷酸化蛋白的比较。

Comparisons of tyrosine phosphorylated proteins in cells expressing lung cancer-specific alleles of EGFR and KRAS.

作者信息

Guha Udayan, Chaerkady Raghothama, Marimuthu Arivusudar, Patterson A Scott, Kashyap Manoj K, Harsha H C, Sato Mitsuo, Bader Joel S, Lash Alex E, Minna John D, Pandey Akhilesh, Varmus Harold E

机构信息

Program in Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.

出版信息

Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14112-7. doi: 10.1073/pnas.0806158105. Epub 2008 Sep 5.

Abstract

We have used unbiased phosphoproteomic approaches, based on quantitative mass spectrometry using stable isotope labeling with amino acids in cell culture (SILAC), to identify tyrosine phosphorylated proteins in isogenic human bronchial epithelial cells (HBECs) and human lung adenocarcinoma cell lines, expressing either of the two mutant alleles of EGFR (L858R and Del E746-A750), or a mutant KRAS allele, which are common in human lung adenocarcinomas. Tyrosine phosphorylation of signaling molecules was greater in HBECs expressing the mutant EGFRs than in cells expressing WT EGFR or mutant KRAS. Receptor tyrosine kinases (such as EGFR, ERBB2, MET, and IGF1R), and Mig-6, an inhibitor of EGFR signaling, were more phosphorylated in HBECs expressing mutant EGFR than in cells expressing WT EGFR or mutant RAS. Phosphorylation of some proteins differed in the two EGFR mutant-expressing cells; for example, some cell junction proteins (beta-catenin, plakoglobin, and E-cadherin) were more phosphorylated in HBECs expressing L858R EGFR than in cells expressing Del EGFR. There were also differences in degree of phosphorylation at individual tyrosine sites within a protein; for example, a previously uncharacterized phosphorylation site in the nucleotide-binding loop of the kinase domains of EGFR (Y727), ERBB2 (Y735), or ERBB4 (Y733), is phosphorylated significantly more in HBECs expressing the deletion mutant than in cells expressing the wild type or L858R EGFR. Signaling molecules not previously implicated in ERBB signaling, such as polymerase transcript release factor (PTRF), were also phosphorylated in cells expressing mutant EGFR. Bayesian network analysis of these and other datasets revealed that PTRF might be a potentially important component of the ERBB signaling network.

摘要

我们采用了基于细胞培养中氨基酸稳定同位素标记(SILAC)的定量质谱分析的无偏磷酸化蛋白质组学方法,来鉴定等基因人支气管上皮细胞(HBECs)和人肺腺癌细胞系中酪氨酸磷酸化的蛋白质。这些细胞系表达表皮生长因子受体(EGFR)的两种突变等位基因(L858R和Del E746 - A750)之一,或一种在人肺腺癌中常见的突变KRAS等位基因。与表达野生型EGFR或突变型KRAS的细胞相比,表达突变型EGFR的HBECs中信号分子的酪氨酸磷酸化水平更高。受体酪氨酸激酶(如EGFR、ERBB2、MET和IGF1R)以及EGFR信号抑制剂Mig - 6,在表达突变型EGFR的HBECs中比在表达野生型EGFR或突变型RAS的细胞中磷酸化程度更高。在两种表达EGFR突变的细胞中,某些蛋白质的磷酸化情况有所不同;例如,一些细胞连接蛋白(β - 连环蛋白、桥粒芯蛋白和E - 钙黏蛋白)在表达L858R EGFR的HBECs中比在表达Del EGFR的细胞中磷酸化程度更高。在一种蛋白质内的各个酪氨酸位点的磷酸化程度也存在差异;例如,EGFR(Y727)、ERBB2(Y735)或ERBB4(Y733)激酶结构域的核苷酸结合环中一个先前未被表征的磷酸化位点,在表达缺失突变体的HBECs中比在表达野生型或L858R EGFR的细胞中磷酸化程度显著更高。先前未涉及ERBB信号传导的信号分子,如聚合酶转录释放因子(PTRF),在表达突变型EGFR的细胞中也发生了磷酸化。对这些及其他数据集的贝叶斯网络分析表明,PTRF可能是ERBB信号网络中一个潜在的重要组成部分。

相似文献

1
Comparisons of tyrosine phosphorylated proteins in cells expressing lung cancer-specific alleles of EGFR and KRAS.
Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14112-7. doi: 10.1073/pnas.0806158105. Epub 2008 Sep 5.
6
Label-free quantitative proteomics and N-glycoproteomics analysis of KRAS-activated human bronchial epithelial cells.
Mol Cell Proteomics. 2012 Oct;11(10):901-15. doi: 10.1074/mcp.M112.020875. Epub 2012 Jul 3.
7
EGFR over-expression in non-small cell lung cancers harboring EGFR mutations is associated with marked down-regulation of CD82.
Biochim Biophys Acta. 2015 Jul;1852(7):1540-9. doi: 10.1016/j.bbadis.2015.04.020. Epub 2015 Apr 23.
9
Co-activation of epidermal growth factor receptor and c-MET defines a distinct subset of lung adenocarcinomas.
Am J Pathol. 2010 Nov;177(5):2191-204. doi: 10.2353/ajpath.2010.100217. Epub 2010 Oct 7.

引用本文的文献

1
Kinase interaction analysis predicts actions of the WNK-OSR1/SPAK pathway.
Commun Biol. 2025 Sep 5;8(1):1335. doi: 10.1038/s42003-025-08551-5.
2
Multimodal scanning of genetic variants with base and prime editing.
Nat Biotechnol. 2024 Nov 12. doi: 10.1038/s41587-024-02439-1.
5
Pan-Cancer landscape of protein activities identifies drivers of signalling dysregulation and patient survival.
Mol Syst Biol. 2023 Mar 9;19(3):e10631. doi: 10.15252/msb.202110631. Epub 2023 Jan 23.
6
Modulation of RNA splicing associated with Wnt signaling pathway using FD-895 and pladienolide B.
Aging (Albany NY). 2022 Mar 1;14(5):2081-2100. doi: 10.18632/aging.203924.
7
Tumor reversion: a dream or a reality.
Biomark Res. 2021 May 6;9(1):31. doi: 10.1186/s40364-021-00280-1.
8
Editorial: Multi-Omics Approaches to Study Signaling Pathways.
Front Bioeng Biotechnol. 2020 Sep 4;8:829. doi: 10.3389/fbioe.2020.00829. eCollection 2020.
9
Targeting UHRF1-dependent DNA repair selectively sensitizes KRAS mutant lung cancer to chemotherapy.
Cancer Lett. 2020 Nov 28;493:80-90. doi: 10.1016/j.canlet.2020.08.008. Epub 2020 Aug 16.
10
Structural characterization of EGFR exon 19 deletion mutation using molecular dynamics simulation.
PLoS One. 2019 Sep 19;14(9):e0222814. doi: 10.1371/journal.pone.0222814. eCollection 2019.

本文引用的文献

2
PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function.
Cell. 2008 Jan 11;132(1):113-24. doi: 10.1016/j.cell.2007.11.042.
3
Signaling networks assembled by oncogenic EGFR and c-Met.
Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):692-7. doi: 10.1073/pnas.0707270105. Epub 2008 Jan 7.
4
Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer.
Cell. 2007 Dec 14;131(6):1190-203. doi: 10.1016/j.cell.2007.11.025.
5
A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization.
J Biol Chem. 2008 Feb 15;283(7):4314-22. doi: 10.1074/jbc.M707890200. Epub 2007 Dec 3.
6
Inhibition of the EGF receptor by binding of MIG6 to an activating kinase domain interface.
Nature. 2007 Nov 29;450(7170):741-4. doi: 10.1038/nature05998.
7
Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies.
Science. 2007 Oct 12;318(5848):287-90. doi: 10.1126/science.1142946. Epub 2007 Sep 13.
8
Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma.
Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12867-72. doi: 10.1073/pnas.0705158104. Epub 2007 Jul 23.
9
Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity.
J Biol Chem. 2007 Apr 13;282(15):11221-9. doi: 10.1074/jbc.M611871200. Epub 2007 Feb 7.
10
Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.
Cell. 2006 Nov 3;127(3):635-48. doi: 10.1016/j.cell.2006.09.026.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验