Novadiscovery SA, Pl. Giovanni da Verrazzano, Lyon, 69009, Rhône, France.
Respiratory Department and Early Phase, Louis Pradel Hospital, Hospices Civils de Lyon Cancer Institute, Lyon, 69100, France.
NPJ Syst Biol Appl. 2023 Jul 31;9(1):37. doi: 10.1038/s41540-023-00292-7.
Lung adenocarcinoma (LUAD) is associated with a low survival rate at advanced stages. Although the development of targeted therapies has improved outcomes in LUAD patients with identified and specific genetic alterations, such as activating mutations on the epidermal growth factor receptor gene (EGFR), the emergence of tumor resistance eventually occurs in all patients and this is driving the development of new therapies. In this paper, we present the In Silico EGFR-mutant LUAD (ISELA) model that links LUAD patients' individual characteristics, including tumor genetic heterogeneity, to tumor size evolution and tumor progression over time under first generation EGFR tyrosine kinase inhibitor gefitinib. This translational mechanistic model gathers extensive knowledge on LUAD and was calibrated on multiple scales, including in vitro, human tumor xenograft mouse and human, reproducing more than 90% of the experimental data identified. Moreover, with 98.5% coverage and 99.4% negative logrank tests, the model accurately reproduced the time to progression from the Lux-Lung 7 clinical trial, which was unused in calibration, thus supporting the model high predictive value. This knowledge-based mechanistic model could be a valuable tool in the development of new therapies targeting EGFR-mutant LUAD as a foundation for the generation of synthetic control arms.
肺腺癌(LUAD)在晚期的生存率较低。尽管针对表皮生长因子受体基因(EGFR)的激活突变等特定基因突变的靶向治疗已经改善了 LUAD 患者的预后,但所有患者最终都会出现肿瘤耐药,这推动了新治疗方法的发展。在本文中,我们提出了基于计算机的 EGFR 突变 LUAD(ISELA)模型,该模型将 LUAD 患者的个体特征(包括肿瘤遗传异质性)与第一代 EGFR 酪氨酸激酶抑制剂吉非替尼作用下的肿瘤大小演变和随时间推移的肿瘤进展联系起来。这个转化机制模型汇集了广泛的 LUAD 知识,并在多个尺度上进行了校准,包括体外、人肿瘤异种移植鼠和人体,复制了超过 90%的已确定实验数据。此外,该模型以 98.5%的覆盖率和 99.4%的负对数秩检验准确复制了 Lux-Lung 7 临床试验中的无进展生存期,而该试验未用于校准,因此支持该模型具有较高的预测价值。这个基于知识的机制模型可以成为针对 EGFR 突变 LUAD 的新治疗方法开发的有价值的工具,作为生成合成对照臂的基础。