Suppr超能文献

KRAS 激活的人支气管上皮细胞的无标记定量蛋白质组学和 N-糖蛋白质组学分析。

Label-free quantitative proteomics and N-glycoproteomics analysis of KRAS-activated human bronchial epithelial cells.

机构信息

Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.

出版信息

Mol Cell Proteomics. 2012 Oct;11(10):901-15. doi: 10.1074/mcp.M112.020875. Epub 2012 Jul 3.

Abstract

Mutational activation of KRAS promotes various malignancies, including lung adenocarcinoma. Knowledge of the molecular targets mediating the downstream effects of activated KRAS is limited. Here, we provide the KRAS target proteins and N-glycoproteins using human bronchial epithelial cells with and without the expression of activated KRAS (KRAS(V12)). Using an OFFGEL peptide fractionation and hydrazide method combined with subsequent LTQ-Orbitrap analysis, we identified 5713 proteins and 608 N-glycosites on 317 proteins in human bronchial epithelial cells. Label-free quantitation of 3058 proteins (≥2 peptides; coefficient of variation (CV) ≤ 20%) and 297 N-glycoproteins (CV ≤ 20%) revealed the differential regulation of 23 proteins and 14 N-glycoproteins caused by activated KRAS, including 84% novel ones. An informatics-assisted IPA-Biomarker® filter analysis prioritized some of the differentially regulated proteins (ALDH3A1, CA2, CTSD, DST, EPHA2, and VIM) and N-glycoproteins (ALCAM, ITGA3, and TIMP-1) as cancer biomarkers. Further, integrated in silico analysis of microarray repository data of lung adenocarcinoma clinical samples and cell lines containing KRAS mutations showed positive mRNA fold changes (p < 0.05) for 61% of the KRAS-regulated proteins, including biomarker proteins, CA2 and CTSD. The most significant discovery of the integrated validation is the down-regulation of FABP5 and PDCD4. A few validated proteins, including tumor suppressor PDCD4, were further confirmed as KRAS targets by shRNA-based knockdown experiments. Finally, the studies on KRAS-regulated N-glycoproteins revealed structural alterations in the core N-glycans of SEMA4B in KRAS-activated human bronchial epithelial cells and functional role of N-glycosylation of TIMP-1 in the regulation of lung adenocarcinoma A549 cell invasion. Together, our study represents the largest proteome and N-glycoproteome data sets for HBECs, which we used to identify several novel potential targets of activated KRAS that may provide insights into KRAS-induced adenocarcinoma and have implications for both lung cancer therapy and diagnosis.

摘要

KRAS 突变激活可促进多种恶性肿瘤的发生,包括肺腺癌。目前对于激活的 KRAS 下游作用的分子靶标的了解还很有限。在这里,我们使用表达激活的 KRAS(KRAS(V12))和不表达 KRAS 的人支气管上皮细胞(HBECs)来鉴定 KRAS 靶蛋白和 N-糖蛋白。通过 OFFGEL 肽分级和酰肼方法与随后的 LTQ-Orbitrap 分析相结合,我们鉴定了人支气管上皮细胞中 317 个蛋白上的 608 个 N-糖基化位点和 5713 个蛋白。使用无标记定量法对 3058 个蛋白(≥2 个肽段;CV≤20%)和 297 个 N-糖蛋白(CV≤20%)进行定量分析,发现激活的 KRAS 导致 23 个蛋白和 14 个 N-糖蛋白发生差异调节,其中 84%为新发现的蛋白。IPA-Biomarker®过滤器分析的信息学辅助分析优先考虑了一些差异调节蛋白(ALDH3A1、CA2、CTSD、DST、EPHA2 和 VIM)和 N-糖蛋白(ALCAM、ITGA3 和 TIMP-1)作为癌症生物标志物。此外,对包含 KRAS 突变的肺腺癌临床样本和细胞系的微阵列存储库数据进行的综合计算分析显示,在受 KRAS 调节的蛋白中,有 61%(包括生物标志物蛋白 CA2 和 CTSD)的 mRNA 折叠变化呈阳性(p<0.05)。综合验证的最显著发现是 FABP5 和 PDCD4 的下调。通过 shRNA 敲低实验进一步证实了少数经验证的蛋白,包括肿瘤抑制因子 PDCD4,是 KRAS 的靶标。最后,对 KRAS 调节的 N-糖蛋白的研究揭示了在 KRAS 激活的人支气管上皮细胞中 SEMA4B 的核心 N-聚糖结构的改变,以及 TIMP-1 的 N-糖基化在调节肺腺癌 A549 细胞侵袭中的功能作用。总之,我们的研究代表了最大的 HBEC 蛋白质组和 N-糖蛋白质组数据集,我们使用该数据集鉴定了几个新的激活的 KRAS 的潜在靶标,这些靶标可能为 KRAS 诱导的腺癌提供了新的见解,并对肺癌的治疗和诊断具有重要意义。

相似文献

1
Label-free quantitative proteomics and N-glycoproteomics analysis of KRAS-activated human bronchial epithelial cells.
Mol Cell Proteomics. 2012 Oct;11(10):901-15. doi: 10.1074/mcp.M112.020875. Epub 2012 Jul 3.
2
Lactate dehydrogenase B is required for the growth of KRAS-dependent lung adenocarcinomas.
Clin Cancer Res. 2013 Feb 15;19(4):773-84. doi: 10.1158/1078-0432.CCR-12-2638. Epub 2012 Dec 6.
3
Human lung epithelial cells progressed to malignancy through specific oncogenic manipulations.
Mol Cancer Res. 2013 Jun;11(6):638-50. doi: 10.1158/1541-7786.MCR-12-0634-T. Epub 2013 Feb 28.
6
Genome-scale analysis of DNA methylation in lung adenocarcinoma and integration with mRNA expression.
Genome Res. 2012 Jul;22(7):1197-211. doi: 10.1101/gr.132662.111. Epub 2012 May 21.
7
Comparisons of tyrosine phosphorylated proteins in cells expressing lung cancer-specific alleles of EGFR and KRAS.
Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14112-7. doi: 10.1073/pnas.0806158105. Epub 2008 Sep 5.
8
RUNX3 downregulation in human lung adenocarcinoma is independent of p53, EGFR or KRAS status.
Pathol Oncol Res. 2012 Oct;18(4):783-92. doi: 10.1007/s12253-011-9485-5. Epub 2012 Jun 24.
10
Broad and thematic remodeling of the surfaceome and glycoproteome on isogenic cells transformed with driving proliferative oncogenes.
Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):7764-7775. doi: 10.1073/pnas.1917947117. Epub 2020 Mar 23.

引用本文的文献

1
Glycosylation in cancer: mechanisms, diagnostic markers, and therapeutic applications.
Mol Cell Biochem. 2025 May 19. doi: 10.1007/s11010-025-05303-1.
2
EPHA2-dependent outcompetition of KRASG12D mutant cells by wild-type neighbors in the adult pancreas.
Curr Biol. 2021 Jun 21;31(12):2550-2560.e5. doi: 10.1016/j.cub.2021.03.094. Epub 2021 Apr 22.
5
Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology.
Int J Mol Sci. 2016 Mar 22;17(3):432. doi: 10.3390/ijms17030432.
6
Glycoproteomic Approach Identifies KRAS as a Positive Regulator of CREG1 in Non-small Cell Lung Cancer Cells.
Theranostics. 2016 Jan 1;6(1):65-77. doi: 10.7150/thno.12350. eCollection 2016.
8
Alterations in the proteome of the respiratory tract in response to single and multiple exposures to naphthalene.
Proteomics. 2015 Aug;15(15):2655-68. doi: 10.1002/pmic.201400445. Epub 2015 May 13.
9
Recent advances in cellular glycomic analyses.
Biomolecules. 2013 Feb 21;3(1):198-225. doi: 10.3390/biom3010198.

本文引用的文献

1
Phosphoproteomics identifies oncogenic Ras signaling targets and their involvement in lung adenocarcinomas.
PLoS One. 2011;6(5):e20199. doi: 10.1371/journal.pone.0020199. Epub 2011 May 26.
2
Activated KrasG¹²D is associated with invasion and metastasis of pancreatic cancer cells through inhibition of E-cadherin.
Br J Cancer. 2011 Mar 15;104(6):1038-48. doi: 10.1038/bjc.2011.31. Epub 2011 Mar 1.
3
Global cancer statistics.
CA Cancer J Clin. 2011 Mar-Apr;61(2):69-90. doi: 10.3322/caac.20107. Epub 2011 Feb 4.
4
Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21.
Cancer Cell. 2010 Sep 14;18(3):282-93. doi: 10.1016/j.ccr.2010.08.013.
5
Mass spectrometry based glycoproteomics--from a proteomics perspective.
Mol Cell Proteomics. 2011 Jan;10(1):R110.003251. doi: 10.1074/mcp.R110.003251. Epub 2010 Aug 24.
6
Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints.
Cell. 2010 May 28;141(5):897-907. doi: 10.1016/j.cell.2010.04.012.
7
Alterations in glycosylation as biomarkers for cancer detection.
J Clin Pathol. 2010 Apr;63(4):322-9. doi: 10.1136/jcp.2009.071035.
8
Cannabidiol inhibits cancer cell invasion via upregulation of tissue inhibitor of matrix metalloproteinases-1.
Biochem Pharmacol. 2010 Apr 1;79(7):955-66. doi: 10.1016/j.bcp.2009.11.007. Epub 2009 Nov 13.
9
IDEAL-Q, an automated tool for label-free quantitation analysis using an efficient peptide alignment approach and spectral data validation.
Mol Cell Proteomics. 2010 Jan;9(1):131-44. doi: 10.1074/mcp.M900177-MCP200. Epub 2009 Sep 13.
10
A label-free quantitative proteomics strategy to identify E3 ubiquitin ligase substrates targeted to proteasome degradation.
Mol Cell Proteomics. 2009 Jul;8(7):1719-27. doi: 10.1074/mcp.M800410-MCP200. Epub 2009 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验