一种用于拷贝数变异病例对照关联测试的稳健统计方法。
A robust statistical method for case-control association testing with copy number variation.
作者信息
Barnes Chris, Plagnol Vincent, Fitzgerald Tomas, Redon Richard, Marchini Jonathan, Clayton David, Hurles Matthew E
机构信息
Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
出版信息
Nat Genet. 2008 Oct;40(10):1245-52. doi: 10.1038/ng.206. Epub 2008 Sep 7.
Copy number variation (CNV) is pervasive in the human genome and can play a causal role in genetic diseases. The functional impact of CNV cannot be fully captured through linkage disequilibrium with SNPs. These observations motivate the development of statistical methods for performing direct CNV association studies. We show through simulation that current tests for CNV association are prone to false-positive associations in the presence of differential errors between cases and controls, especially if quantitative CNV measurements are noisy. We present a statistical framework for performing case-control CNV association studies that applies likelihood ratio testing of quantitative CNV measurements in cases and controls. We show that our methods are robust to differential errors and noisy data and can achieve maximal theoretical power. We illustrate the power of these methods for testing for association with binary and quantitative traits, and have made this software available as the R package CNVtools.
拷贝数变异(CNV)在人类基因组中普遍存在,并且可能在遗传疾病中起因果作用。CNV的功能影响无法通过与单核苷酸多态性(SNP)的连锁不平衡来完全捕捉。这些观察结果推动了用于进行直接CNV关联研究的统计方法的发展。我们通过模拟表明,在病例和对照之间存在差异误差的情况下,当前的CNV关联测试容易出现假阳性关联,特别是如果定量CNV测量存在噪声。我们提出了一个用于进行病例对照CNV关联研究的统计框架,该框架应用病例和对照中定量CNV测量的似然比检验。我们表明,我们的方法对差异误差和噪声数据具有鲁棒性,并且可以实现最大理论效能。我们展示了这些方法用于检验与二元和定量性状关联的效能,并已将此软件作为R包CNVtools提供。