Ashton Edward, Raunig David, Ng Chaan, Kelcz Fredrick, McShane Teresa, Evelhoch Jeffrey
VirtualScopics, Inc., 500 Linden Oaks, Rochester, New York 14625, USA.
J Magn Reson Imaging. 2008 Sep;28(3):791-6. doi: 10.1002/jmri.21472.
To evaluate the contribution to scan-rescan coefficient of variation (CV) of patient-specific arterial input function (AIF) measurement in dynamic contrast-enhanced MRI (DCE-MRI) data, and to determine whether any advantage or disadvantage to using a data-derived arterial input function is related to the anatomical location of the target lesion.
Two methods are presented for the calculation of perfusion parameters from DCE-MRI data using a two-compartment model. The first method makes use of a single-model AIF across all study data sets, while the second uses an automated process to derive an AIF specific to each data set. Both methods are applied to the analysis of a 25-subject scan-rescan study of patients with advanced solid tumors located in either the lungs or the liver. The parameters of interest in this study are the volume transfer constant between arterial plasma and extracellular extravascular space (Ktrans) and the blood-normalized initial area under the tumor enhancement curve over the first 90 seconds postinjection (IAUCBN90).
The use of a data-derived AIF reduces the visit-to-visit CV in both parameters for liver lesions by approximately 70% while the improvement is less than 20% for lung lesions.
The use of a data-derived AIF in the analysis of DCE-MRI data provides a substantial reduction in scan-rescan CV in the measurement of vascular parameters such as Ktrans and IAUCBN90. These results show a much larger advantage in the liver than in the lungs. However, this difference is largely driven by a small number of outliers, and may be spurious.
评估在动态对比增强磁共振成像(DCE-MRI)数据中,患者特异性动脉输入函数(AIF)测量对扫描-重扫变异系数(CV)的贡献,并确定使用数据衍生的动脉输入函数的任何优势或劣势是否与目标病变的解剖位置相关。
提出了两种使用双室模型从DCE-MRI数据计算灌注参数的方法。第一种方法在所有研究数据集中使用单一模型的AIF,而第二种方法使用自动化过程来得出特定于每个数据集的AIF。两种方法都应用于对25名患有位于肺部或肝脏的晚期实体瘤患者的扫描-重扫研究的分析。本研究中感兴趣的参数是动脉血浆与细胞外血管外间隙之间的容积转移常数(Ktrans)以及注射后前90秒肿瘤增强曲线下的血液归一化初始面积(IAUCBN90)。
使用数据衍生的AIF可使肝脏病变的两个参数的访视间CV降低约70%,而肺部病变的改善则小于20%。
在DCE-MRI数据分析中使用数据衍生的AIF可大幅降低血管参数(如Ktrans和IAUCBN90)测量中的扫描-重扫CV。这些结果表明在肝脏中比在肺部有更大的优势。然而,这种差异在很大程度上是由少数异常值驱动的,可能是虚假的。