Suppr超能文献

动态对比增强前列腺 MRI 重复性的拟合模型和动脉输入函数选择。

Selection of Fitting Model and Arterial Input Function for Repeatability in Dynamic Contrast-Enhanced Prostate MRI.

机构信息

Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115.

Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.

出版信息

Acad Radiol. 2019 Sep;26(9):e241-e251. doi: 10.1016/j.acra.2018.10.018. Epub 2018 Nov 20.

Abstract

RATIONALE AND OBJECTIVES

Analysis of dynamic contrast-enhanced (DCE) magnetic resonance imaging is notable for the variability of calculated parameters. The purpose of this study was to evaluate the level of measurement variability and error/variability due to modeling in DCE magnetic resonance imaging parameters.

MATERIALS AND METHODS

Two prostate DCE scans were performed on 11 treatment-naïve patients with suspected or confirmed prostate peripheral zone cancer within an interval of less than two weeks. Tumor-suspicious and normal-appearing regions of interest (ROI) in the prostate peripheral zone were segmented. Different Tofts-Kety based models and different arterial input functions, with and without bolus arrival time (BAT) correction, were used to extract pharmacokinetic parameters. The percent repeatability coefficient (%RC) of fitted model parameters K, v, and k was calculated. Paired t-tests comparing parameters in tumor-suspicious ROIs and in normal-appearing tissue evaluated each parameter's sensitivity to pathology.

RESULTS

Although goodness-of-fit criteria favored the four-parameter extended Tofts-Kety model with the BAT correction included, the simplest two-parameter Tofts-Kety model overall yielded the best repeatability scores. The best %RC in the tumor-suspicious ROI was 63% for k, 28% for v and 83% for K . The best p values for discrimination between tissues were p <10 for k and K, and p = 0.11 for v. Addition of the BAT correction to the models did not improve repeatability.

CONCLUSION

The parameter k, using an arterial input functions directly measured from blood signals, was more repeatable than K. Both K and k values were highly discriminatory between healthy and diseased tissues in all cases. The parameter v had high repeatability but could not distinguish the two tissue types.

摘要

原理和目的

动态对比增强(DCE)磁共振成像分析的特点是计算参数的可变性。本研究的目的是评估 DCE 磁共振成像参数中测量变异性和建模引起的误差/变异性的水平。

材料和方法

对 11 例疑似或确诊前列腺外周区癌的治疗初治患者在两周内进行两次前列腺 DCE 扫描。在前列腺外周区分割肿瘤可疑和正常表现的感兴趣区(ROI)。使用不同的基于 Tofts-Kety 的模型和不同的动脉输入函数,包括和不包括 bolus arrival time(BAT)校正,提取药代动力学参数。计算拟合模型参数 K、v 和 k 的可重复性系数(%RC)。通过比较肿瘤可疑 ROI 中的参数和正常组织中的参数,对每个参数对病理学的敏感性进行配对 t 检验。

结果

尽管拟合优度标准偏向于包含 BAT 校正的四参数扩展 Tofts-Kety 模型,但最简单的两参数 Tofts-Kety 模型总体上产生了最佳的可重复性评分。肿瘤可疑 ROI 中的最佳%RC 为 k 为 63%,v 为 28%,K 为 83%。组织之间区分的最佳 p 值为 k 和 K 为 p<10,v 为 p=0.11。向模型添加 BAT 校正并未提高可重复性。

结论

使用直接从血液信号测量的动脉输入函数的参数 k 比 K 更具可重复性。在所有情况下,K 和 k 值在健康组织和患病组织之间均具有高度的区分能力。参数 v 具有较高的可重复性,但无法区分两种组织类型。

相似文献

1
Selection of Fitting Model and Arterial Input Function for Repeatability in Dynamic Contrast-Enhanced Prostate MRI.
Acad Radiol. 2019 Sep;26(9):e241-e251. doi: 10.1016/j.acra.2018.10.018. Epub 2018 Nov 20.
3
Dependence of DCE-MRI biomarker values on analysis algorithm.
PLoS One. 2015 Jul 24;10(7):e0130168. doi: 10.1371/journal.pone.0130168. eCollection 2015.
6
Arterial input function for quantitative dynamic contrast-enhanced MRI to diagnose prostate cancer.
Diagn Interv Radiol. 2022 Mar;28(2):108-114. doi: 10.5152/dir.2022.19512.
8
Relative sensitivities of DCE-MRI pharmacokinetic parameters to arterial input function (AIF) scaling.
J Magn Reson. 2016 Aug;269:104-112. doi: 10.1016/j.jmr.2016.05.018. Epub 2016 May 28.
9

引用本文的文献

1
Quantitative DCE Dynamics on Transformed MR Imaging Discriminates Clinically Significant Prostate Cancer.
Cancer Control. 2024 Jan-Dec;31:10732748241298539. doi: 10.1177/10732748241298539.
2
4
A Technique to Enable Efficient Adaptive Radiation Therapy: Automated Contouring of Prostate and Adjacent Organs.
Adv Radiat Oncol. 2023 Aug 7;9(1):101336. doi: 10.1016/j.adro.2023.101336. eCollection 2024 Jan.
7
Maximum Entropy Technique and Regularization Functional for Determining the Pharmacokinetic Parameters in DCE-MRI.
J Digit Imaging. 2022 Oct;35(5):1176-1188. doi: 10.1007/s10278-022-00646-3. Epub 2022 May 26.
9
Modified Maximum Entropy Method and Estimating the AIF via DCE-MRI Data Analysis.
Entropy (Basel). 2022 Jan 20;24(2):155. doi: 10.3390/e24020155.
10
Repeatability of tumor perfusion kinetics from dynamic contrast-enhanced MRI in glioblastoma.
Neurooncol Adv. 2021 Nov 22;3(1):vdab174. doi: 10.1093/noajnl/vdab174. eCollection 2021 Jan-Dec.

本文引用的文献

2
Interpreting Change in Quantitative Imaging Biomarkers.
Acad Radiol. 2018 Mar;25(3):372-379. doi: 10.1016/j.acra.2017.09.023. Epub 2017 Dec 1.
4
Effects of arterial input function selection on kinetic parameters in brain dynamic contrast-enhanced MRI.
Magn Reson Imaging. 2017 Jul;40:83-90. doi: 10.1016/j.mri.2017.04.006. Epub 2017 Apr 21.
5
Estimation of contrast agent bolus arrival delays for improved reproducibility of liver DCE MRI.
Phys Med Biol. 2016 Oct 7;61(19):6905-6918. doi: 10.1088/0031-9155/61/19/6905. Epub 2016 Sep 12.
6
Relative sensitivities of DCE-MRI pharmacokinetic parameters to arterial input function (AIF) scaling.
J Magn Reson. 2016 Aug;269:104-112. doi: 10.1016/j.jmr.2016.05.018. Epub 2016 May 28.
8
DCE MRI of prostate cancer.
Abdom Radiol (NY). 2016 May;41(5):844-53. doi: 10.1007/s00261-015-0589-3.
9
Bolus arrival time and its effect on tissue characterization with dynamic contrast-enhanced magnetic resonance imaging.
J Med Imaging (Bellingham). 2016 Jan;3(1):014503. doi: 10.1117/1.JMI.3.1.014503. Epub 2016 Mar 1.
10
Dynamic contrast-enhanced MRI for oncology drug development.
J Magn Reson Imaging. 2016 Aug;44(2):251-64. doi: 10.1002/jmri.25173. Epub 2016 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验