Suppr超能文献

基于模糊推理的三维主动形状模型:在心脏CT和磁共振成像中的应用

A 3-D active shape model driven by fuzzy inference: application to cardiac CT and MR.

作者信息

van Assen Hans C, Danilouchkine Mikhail G, Dirksen Martijn S, Reiber Johan H C, Lelieveldt Boudewijn P F

机构信息

Division of Image Processing, Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.

出版信息

IEEE Trans Inf Technol Biomed. 2008 Sep;12(5):595-605. doi: 10.1109/TITB.2008.926477.

Abstract

Manual quantitative analysis of cardiac left ventricular function using Multislice CT and MR is arduous because of the large data volume. In this paper, we present a 3-D active shape model (ASM) for semiautomatic segmentation of cardiac CT and MR volumes, without the requirement of retraining the underlying statistical shape model. A fuzzy c-means based fuzzy inference system was incorporated into the model. Thus, relative gray-level differences instead of absolute gray values were used for classification of 3-D regions of interest (ROIs), removing the necessity of training different models for different modalities/acquisition protocols. The 3-D ASM was evaluated using 25 CT and 15 MR datasets. Automatically generated contours were compared to expert contours in 100 locations. For CT, 82.4% of epicardial contours and 74.1% of endocardial contours had a maximum error of 5 mm along 95% of the contour arc length. For MR, those numbers were 93.2% (epicardium) and 91.4% (endocardium). Volume regression analysis revealed good linear correlations between manual and semiautomatic volumes, r(2) >/= 0.98. This study shows that the fuzzy inference 3-D ASM is a robust promising instrument for semiautomatic cardiac left ventricle segmentation. Without retraining its statistical shape component, it is applicable to routinely acquired CT and MR studies.

摘要

由于数据量庞大,使用多层CT和MR对心脏左心室功能进行手动定量分析十分艰巨。在本文中,我们提出了一种用于心脏CT和MR容积半自动分割的三维主动形状模型(ASM),无需重新训练基础统计形状模型。该模型纳入了基于模糊c均值的模糊推理系统。因此,使用相对灰度差异而非绝对灰度值对三维感兴趣区域(ROI)进行分类,消除了针对不同模态/采集协议训练不同模型的必要性。使用25个CT数据集和15个MR数据集对三维ASM进行了评估。在100个位置将自动生成的轮廓与专家轮廓进行比较。对于CT,82.4%的心外膜轮廓和74.1%的心内膜轮廓在95%的轮廓弧长上最大误差为5毫米。对于MR,这些数字分别为93.2%(心外膜)和91.4%(心内膜)。容积回归分析显示手动和半自动容积之间具有良好的线性相关性,r(2)≥0.98。本研究表明,模糊推理三维ASM是一种用于心脏左心室半自动分割的强大且有前景的工具。无需重新训练其统计形状组件,它适用于常规采集的CT和MR研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验