Suppr超能文献

大鼠、兔、狗、狒狒和人类腕管内滑膜下结缔组织的比较解剖学

Comparative anatomy of the subsynovial connective tissue in the carpal tunnel of the rat, rabbit, dog, baboon, and human.

作者信息

Ettema Anke M, Zhao Chunfeng, An Kai-Nan, Amadio Peter C

机构信息

Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA.

出版信息

Hand (N Y). 2006 Dec;1(2):78-84. doi: 10.1007/s11552-006-9009-z.

Abstract

The tenosynovium in the human carpal tunnel is connected to the flexor tendons and the median nerve by the subsynovial connective tissue (SSCT). The most common histological finding in carpal tunnel syndrome (CTS), a compression neuropathy of the median nerve, is noninflammatory fibrosis of the SSCT. The relationship, if any, between the fibrosis and nerve pathology is unknown, although some have speculated that a change in the SSCT volume or stiffness might be the source of the compression. Yet, while animal models have been used to study the physiology of nerve compression, so far none have been used to study the relationship of the SSCT pathology to the neurophysiological abnormalities. The purpose of this study was to identify animal models that might be appropriate to study the interaction of SSCT and nerve function in the development of CTS. The front paws of a rat, rabbit, dog, and baboon were dissected. The carpal tunnel anatomy and SSCT of these animals were also examined by light and scanning microscopy and compared to the relevant human anatomy and ultrastructure. The carpal tunnel anatomy and contents of the baboon and rabbit are similar to humans. The canine carpal tunnel lacks the superficial flexor tendons and the rat carpal tunnel is very small. The human, baboon, and rabbit specimens had very similar organization of the SSCT, and content of the carpal canal. We conclude that, while both the baboon and rabbit would be good animal models to study the relationship of the SSCT to CTS, the rabbit is likely to be more practical, in terms of cost and animal care concerns.

摘要

人腕管内的腱鞘通过滑膜下结缔组织(SSCT)与屈肌腱和正中神经相连。腕管综合征(CTS,一种正中神经受压性神经病变)最常见的组织学表现是SSCT的非炎性纤维化。尽管有人推测SSCT体积或硬度的改变可能是压迫的根源,但纤维化与神经病理学之间的关系(如果有的话)尚不清楚。然而,虽然动物模型已被用于研究神经受压的生理学,但迄今为止,尚无用于研究SSCT病理学与神经生理异常之间关系的模型。本研究的目的是确定可能适合研究腕管综合征发生过程中SSCT与神经功能相互作用的动物模型。对大鼠、兔子、狗和狒狒的前爪进行了解剖。还通过光学显微镜和扫描显微镜检查了这些动物的腕管解剖结构和SSCT,并与相关的人体解剖结构和超微结构进行了比较。狒狒和兔子的腕管解剖结构和内容物与人类相似。犬类腕管缺少浅屈肌腱,大鼠腕管非常小。人类、狒狒和兔子的标本在SSCT的组织结构和腕管内容物方面非常相似。我们得出结论,虽然狒狒和兔子都是研究SSCT与CTS关系的良好动物模型,但就成本和动物护理问题而言,兔子可能更实用。

相似文献

2
Tendon injury produces changes in SSCT and nerve physiology similar to carpal tunnel syndrome in an in vivo rabbit model.
Hand (N Y). 2011 Dec;6(4):399-407. doi: 10.1007/s11552-011-9356-2. Epub 2011 Sep 10.
4
The biomechanics of subsynovial connective tissue in health and its role in carpal tunnel syndrome.
J Electromyogr Kinesiol. 2018 Feb;38:232-239. doi: 10.1016/j.jelekin.2017.10.007. Epub 2017 Oct 24.
7
Subsynovial connective tissue development in the rabbit carpal tunnel.
Vet Med Sci. 2020 Nov;6(4):1025-1033. doi: 10.1002/vms3.281. Epub 2020 May 6.
8
Carpal tunnel syndrome pathophysiology: role of subsynovial connective tissue.
J Wrist Surg. 2014 Nov;3(4):220-6. doi: 10.1055/s-0034-1394133.
10
Subsynovial connective tissue is sensitive to surgical interventions in a rabbit model of carpal tunnel syndrome.
J Orthop Res. 2012 Apr;30(4):649-54. doi: 10.1002/jor.21565. Epub 2011 Oct 18.

引用本文的文献

2
Anatomy of the Palmar Region of the Carpus of the Dog.
Animals (Basel). 2022 Jun 18;12(12):1573. doi: 10.3390/ani12121573.
3
Subsynovial connective tissue development in the rabbit carpal tunnel.
Vet Med Sci. 2020 Nov;6(4):1025-1033. doi: 10.1002/vms3.281. Epub 2020 May 6.
4
The biomechanics of subsynovial connective tissue in health and its role in carpal tunnel syndrome.
J Electromyogr Kinesiol. 2018 Feb;38:232-239. doi: 10.1016/j.jelekin.2017.10.007. Epub 2017 Oct 24.
6
Delineation of the mechanisms of tendon gliding resistance within the carpal tunnel.
Clin Biomech (Bristol). 2017 Jan;41:48-53. doi: 10.1016/j.clinbiomech.2016.12.001. Epub 2016 Dec 5.
7
Comparison of Cervical Spine Anatomy in Calves, Pigs and Humans.
PLoS One. 2016 Feb 11;11(2):e0148610. doi: 10.1371/journal.pone.0148610. eCollection 2016.
8
Carpal tunnel syndrome pathophysiology: role of subsynovial connective tissue.
J Wrist Surg. 2014 Nov;3(4):220-6. doi: 10.1055/s-0034-1394133.
9
TGF-β signaling regulates fibrotic expression and activity in carpal tunnel syndrome.
J Orthop Res. 2014 Nov;32(11):1444-50. doi: 10.1002/jor.22694. Epub 2014 Jul 30.
10
Assessment of the kinetic trajectory of the median nerve in the wrist by high-frequency ultrasound.
Sensors (Basel). 2014 Apr 28;14(5):7738-52. doi: 10.3390/s140507738.

本文引用的文献

1
Changes in the functional structure of the tenosynovium in idiopathic carpal tunnel syndrome: a scanning electron microscope study.
Plast Reconstr Surg. 2006 Nov;118(6):1413-1422. doi: 10.1097/01.prs.0000239593.55293.c7.
3
Dose-responsiveness of electrophysiologic change in a new model of acute carpal tunnel syndrome.
Clin Orthop Relat Res. 2004 Oct(427):120-6. doi: 10.1097/01.blo.0000142352.88039.33.
4
Effect of gap size on gliding resistance after flexor tendon repair.
J Bone Joint Surg Am. 2004 Nov;86(11):2482-8. doi: 10.2106/00004623-200411000-00019.
5
Biochemistry of carpal tunnel syndrome.
Microsurgery. 2005;25(1):44-6. doi: 10.1002/micr.20071.
7
Evaluation of possible carpal tunnel syndrome in dogs.
Vet Rec. 2004 Jul 24;155(4):122-4. doi: 10.1136/vr.155.4.122.
9
A histological and immunohistochemical study of the subsynovial connective tissue in idiopathic carpal tunnel syndrome.
J Bone Joint Surg Am. 2004 Jul;86(7):1458-66. doi: 10.2106/00004623-200407000-00014.
10
Performance of a high-repetition, high-force task induces carpal tunnel syndrome in rats.
J Orthop Sports Phys Ther. 2004 May;34(5):244-53. doi: 10.2519/jospt.2004.34.5.244.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验