Suppr超能文献

触发GroEL - GroES复合物内的蛋白质折叠。

Triggering protein folding within the GroEL-GroES complex.

作者信息

Madan Damian, Lin Zong, Rye Hays S

机构信息

Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.

出版信息

J Biol Chem. 2008 Nov 14;283(46):32003-13. doi: 10.1074/jbc.M802898200. Epub 2008 Sep 9.

Abstract

The folding of many proteins depends on the assistance of chaperonins like GroEL and GroES and involves the enclosure of substrate proteins inside an internal cavity that is formed when GroES binds to GroEL in the presence of ATP. Precisely how assembly of the GroEL-GroES complex leads to substrate protein encapsulation and folding remains poorly understood. Here we use a chemically modified mutant of GroEL (EL43Py) to uncouple substrate protein encapsulation from release and folding. Although EL43Py correctly initiates a substrate protein encapsulation reaction, this mutant stalls in an intermediate allosteric state of the GroEL ring, which is essential for both GroES binding and the forced unfolding of the substrate protein. This intermediate conformation of the GroEL ring possesses simultaneously high affinity for both GroES and non-native substrate protein, thus preventing escape of the substrate protein while GroES binding and substrate protein compaction takes place. Strikingly, assembly of the folding-active GroEL-GroES complex appears to involve a strategic delay in ATP hydrolysis that is coupled to disassembly of the old, ADP-bound GroEL-GroES complex on the opposite ring.

摘要

许多蛋白质的折叠依赖于诸如GroEL和GroES等伴侣蛋白的协助,并且涉及底物蛋白被包裹在一个内部腔室中,该腔室是在ATP存在下GroES与GroEL结合时形成的。GroEL - GroES复合物的组装究竟如何导致底物蛋白的封装和折叠,目前仍知之甚少。在这里,我们使用GroEL的一种化学修饰突变体(EL43Py)来将底物蛋白的封装与释放和折叠解偶联。尽管EL43Py能正确启动底物蛋白的封装反应,但该突变体在GroEL环的中间变构状态下停滞,这种状态对于GroES结合以及底物蛋白的强制展开都是必不可少的。GroEL环的这种中间构象对GroES和非天然底物蛋白同时具有高亲和力,从而在GroES结合和底物蛋白压实发生时防止底物蛋白逃逸。引人注目的是,具有折叠活性的GroEL - GroES复合物的组装似乎涉及ATP水解的策略性延迟,这与对面环上旧的、结合ADP的GroEL - GroES复合物的解体相关联。

相似文献

1
Triggering protein folding within the GroEL-GroES complex.
J Biol Chem. 2008 Nov 14;283(46):32003-13. doi: 10.1074/jbc.M802898200. Epub 2008 Sep 9.
2
Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding.
Science. 1995 Aug 11;269(5225):836-41. doi: 10.1126/science.7638601.
3
Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction.
Cell. 1996 Feb 9;84(3):481-90. doi: 10.1016/s0092-8674(00)81293-3.
4
Revisiting the GroEL-GroES reaction cycle via the symmetric intermediate implied by novel aspects of the GroEL(D398A) mutant.
J Biol Chem. 2008 Aug 29;283(35):23774-81. doi: 10.1074/jbc.M802542200. Epub 2008 Jun 20.
5
Effective ATPase activity and moderate chaperonin-cochaperonin interaction are important for the functional single-ring chaperonin system.
Biochem Biophys Res Commun. 2015 Oct 9;466(1):15-20. doi: 10.1016/j.bbrc.2015.08.034. Epub 2015 Aug 11.
6
BeF(x) stops the chaperonin cycle of GroEL-GroES and generates a complex with double folding chambers.
J Biol Chem. 2004 Oct 29;279(44):45737-43. doi: 10.1074/jbc.M406795200. Epub 2004 Aug 30.
7
Characterisation of a GroEL single-ring mutant that supports growth of Escherichia coli and has GroES-dependent ATPase activity.
J Mol Biol. 2010 Mar 12;396(5):1271-83. doi: 10.1016/j.jmb.2009.11.074. Epub 2009 Dec 16.
8
Active cage mechanism of chaperonin-assisted protein folding demonstrated at single-molecule level.
J Mol Biol. 2014 Jul 29;426(15):2739-54. doi: 10.1016/j.jmb.2014.04.018. Epub 2014 May 6.
9
Chaperonin-Assisted Protein Folding: Relative Population of Asymmetric and Symmetric GroEL:GroES Complexes.
J Mol Biol. 2015 Jun 19;427(12):2244-55. doi: 10.1016/j.jmb.2015.04.009. Epub 2015 Apr 23.
10
GroEL and the GroEL-GroES Complex.
Subcell Biochem. 2017;83:483-504. doi: 10.1007/978-3-319-46503-6_17.

引用本文的文献

1
Mix-it-up: Accessible time-resolved cryo-EM on the millisecond timescale.
bioRxiv. 2025 Jul 26:2025.07.22.666177. doi: 10.1101/2025.07.22.666177.
2
Asymmetric apical domain states of mitochondrial Hsp60 coordinate substrate engagement and chaperonin assembly.
Nat Struct Mol Biol. 2024 Dec;31(12):1848-1858. doi: 10.1038/s41594-024-01352-0. Epub 2024 Jul 1.
3
How soluble misfolded proteins bypass chaperones at the molecular level.
Nat Commun. 2023 Jun 21;14(1):3689. doi: 10.1038/s41467-023-38962-z.
4
Dissecting the Thermodynamics of ATP Binding to GroEL One Nucleotide at a Time.
ACS Cent Sci. 2023 Feb 20;9(3):466-475. doi: 10.1021/acscentsci.2c01065. eCollection 2023 Mar 22.
5
Development and application of multicolor burst analysis spectroscopy.
Biophys J. 2021 Jun 1;120(11):2192-2204. doi: 10.1016/j.bpj.2021.03.035. Epub 2021 Apr 5.
6
GroEL Mediates Folding of Serine/Threonine Protein Kinase, PrkC.
Indian J Microbiol. 2018 Dec;58(4):520-524. doi: 10.1007/s12088-018-0744-y. Epub 2018 May 30.
7
Chaperonin facilitates protein folding by avoiding initial polypeptide collapse.
J Biochem. 2018 Nov 1;164(5):369-379. doi: 10.1093/jb/mvy061.
8
Substrate protein dependence of GroEL-GroES interaction cycle revealed by high-speed atomic force microscopy imaging.
Philos Trans R Soc Lond B Biol Sci. 2018 Jun 19;373(1749). doi: 10.1098/rstb.2017.0180.
9
GroEL actively stimulates folding of the endogenous substrate protein PepQ.
Nat Commun. 2017 Jun 30;8:15934. doi: 10.1038/ncomms15934.
10
The chaperone toolbox at the single-molecule level: From clamping to confining.
Protein Sci. 2017 Jul;26(7):1291-1302. doi: 10.1002/pro.3161. Epub 2017 Apr 20.

本文引用的文献

1
GroEL stimulates protein folding through forced unfolding.
Nat Struct Mol Biol. 2008 Mar;15(3):303-11. doi: 10.1038/nsmb.1394. Epub 2008 Mar 2.
3
Topologies of a substrate protein bound to the chaperonin GroEL.
Mol Cell. 2007 May 11;26(3):415-26. doi: 10.1016/j.molcel.2007.04.004.
4
Perturbed ATPase activity and not "close confinement" of substrate in the cis cavity affects rates of folding by tail-multiplied GroEL.
Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5342-7. doi: 10.1073/pnas.0700820104. Epub 2007 Mar 19.
5
GroEL-mediated protein folding: making the impossible, possible.
Crit Rev Biochem Mol Biol. 2006 Jul-Aug;41(4):211-39. doi: 10.1080/10409230600760382.
7
Elucidation of steps in the capture of a protein substrate for efficient encapsulation by GroE.
J Biol Chem. 2006 Jul 28;281(30):21266-21275. doi: 10.1074/jbc.M601605200. Epub 2006 May 9.
8
A common allosteric site and mechanism in caspases.
Proc Natl Acad Sci U S A. 2006 May 16;103(20):7595-600. doi: 10.1073/pnas.0602571103. Epub 2006 May 8.
9
Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes.
Nat Struct Mol Biol. 2006 Feb;13(2):147-52. doi: 10.1038/nsmb1046. Epub 2006 Jan 22.
10
Expansion and compression of a protein folding intermediate by GroEL.
Mol Cell. 2004 Oct 8;16(1):23-34. doi: 10.1016/j.molcel.2004.09.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验