Suppr超能文献

GroEL 单环突变体的特性研究,该突变体能支持大肠杆菌的生长,并具有 GroES 依赖性的 ATP 酶活性。

Characterisation of a GroEL single-ring mutant that supports growth of Escherichia coli and has GroES-dependent ATPase activity.

机构信息

School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

出版信息

J Mol Biol. 2010 Mar 12;396(5):1271-83. doi: 10.1016/j.jmb.2009.11.074. Epub 2009 Dec 16.

Abstract

Binding and folding of substrate proteins by the molecular chaperone GroEL alternates between its two seven-membered rings in an ATP-regulated manner. The association of ATP and GroES to a polypeptide-bound ring of GroEL encapsulates the folding proteins in the central cavity of that ring (cis ring) and allows it to fold in a protected environment where the risk of aggregation is reduced. ATP hydrolysis in the cis ring changes the potentials within the system such that ATP binding to the opposite (trans) ring triggers the release of all ligands from the cis ring of GroEL through a complex network of allosteric communication between the rings. Inter-ring allosteric communication thus appears indispensable for the function of GroEL, and an engineered single-ring version (SR1) cannot substitute for GroEL in vivo. We describe here the isolation and characterisation of an active single-ring form of the GroEL protein (SR-A92T), which has an exceptionally low ATPase activity that is strongly stimulated by the addition of GroES. Dissection of the kinetic pathway of the ATP-induced structural changes in this active single ring can be explained by the fact that the mutation effectively blocks progression through the full allosteric pathway of the GroEL reaction cycle, thus trapping an early allosteric intermediate. Addition of GroES is able to overcome this block by binding this intermediate and pulling the allosteric pathway to completion via mass action, explaining how bacterial cells expressing this protein as their only chaperonin are viable.

摘要

分子伴侣 GroEL 通过其两个七元环以 ATP 调节的方式结合和折叠底物蛋白。ATP 和 GroES 与 GroEL 结合的多肽环结合,将折叠蛋白包裹在该环的中央腔(顺式环)中,并允许其在保护的环境中折叠,从而降低聚集的风险。顺式环中的 ATP 水解改变了系统内的势能,使得 ATP 与相反的(反式)环结合,通过环之间复杂的变构通讯网络触发 GroEL 顺式环中所有配体的释放。因此,环间变构通讯似乎对 GroEL 的功能是必不可少的,而工程化的单环版本(SR1)在体内不能替代 GroEL。我们在这里描述了 GroEL 蛋白的一种活性单环形式(SR-A92T)的分离和特性,它具有异常低的 ATP 酶活性,GroES 的加入可强烈刺激其活性。该活性单环中 ATP 诱导的结构变化的动力学途径可以通过以下事实来解释:该突变有效地阻止了 GroEL 反应循环的完整变构途径的进展,从而捕获了早期的变构中间产物。GroES 的加入能够通过结合该中间产物并通过质量作用将变构途径拉至完成来克服这种阻碍,从而解释了仅表达这种蛋白作为其唯一伴侣蛋白的细菌细胞为何能够存活。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验