Suppr超能文献

细胞接种和周期性拉伸对细胞外基质衍生生物支架中纤维重塑的影响。

Effects of cell seeding and cyclic stretch on the fiber remodeling in an extracellular matrix-derived bioscaffold.

作者信息

Nguyen Tan D, Liang Rui, Woo Savio L-Y, Burton Shawn D, Wu Changfu, Almarza Alejandro, Sacks Michael S, Abramowitch Steven

机构信息

Department of Bioengineering, Musculoskeletal Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

出版信息

Tissue Eng Part A. 2009 Apr;15(4):957-63. doi: 10.1089/ten.tea.2007.0384.

Abstract

The porcine small intestine submucosa, an extracellular matrix-derived bioscaffold (ECM-SIS), has been successfully used to enhance the healing of ligaments and tendons. Since the collagen fibers of ECM-SIS have an orientation of +/- 30 degrees , its application in improving the healing of the parallel-fibered ligament and tendon may not be optimal. Therefore, the objective was to improve the collagen fiber alignment of ECM-SIS in vitro with fibroblast seeding and cyclic stretch. The hypothesis was that with the synergistic effects of cell seeding and mechanical stimuli, the collagen fibers in the ECM-SIS can be remodeled and aligned, making it an improved bioscaffold with enhanced conductive properties. Three experimental groups were established: group I (n = 14), ECM-SIS was seeded with fibroblasts and cyclically stretched; group II (n = 13), ECM-SIS was seeded with fibroblasts but not cyclically stretched; and group III (n = 8), ECM-SIS was not seeded with fibroblasts but cyclically stretched. After 5 days' experiments, the scaffolds from all the three groups (n = 9 for group I; n = 8 for groups II and III) were processed for quantification of the collagen fiber orientation with a small-angle light scattering (SALS) system. For groups I and II, in which the scaffolds were seeded with fibroblasts, the cell morphology and orientation and newly produced collagen fibrils were examined with confocal fluorescent microscopy (n = 3/group) and transmission electronic microscopy (n = 2/group). The results revealed that the collagen fiber orientation in group I was more aligned closer to the stretching direction when compared to the other two groups. The mean angle decreased from 25.3 degrees to 7.1 degrees (p < 0.05), and the associated angular dispersion was also reduced (37.4 degrees vs. 18.5 degrees , p < 0.05). In contrast, groups II and III demonstrated minimal changes. The cells in group I were more aligned in the stretching direction than those in group II. Newly produced collagen fibrils could be observed along the cells in both groups I and II. This study demonstrated that a combination of fibroblast seeding and cyclic stretch could remodel and align the collagen fiber orientation in ECM-SIS bioscaffolds. The better-aligned ECM-SIS has the prospect of eliciting improved effects on enhancing the healing of ligaments and tendons.

摘要

猪小肠黏膜下层,一种细胞外基质衍生的生物支架(ECM-SIS),已成功用于促进韧带和肌腱的愈合。由于ECM-SIS的胶原纤维具有±30度的取向,其在改善平行纤维韧带和肌腱愈合方面的应用可能并非最佳。因此,目的是通过接种成纤维细胞和循环拉伸在体外改善ECM-SIS的胶原纤维排列。假设是在细胞接种和机械刺激的协同作用下,ECM-SIS中的胶原纤维可以重塑和排列,使其成为具有增强传导性能的改良生物支架。设立了三个实验组:第一组(n = 14),将成纤维细胞接种到ECM-SIS上并进行循环拉伸;第二组(n = 13),将成纤维细胞接种到ECM-SIS上但不进行循环拉伸;第三组(n = 8),未将成纤维细胞接种到ECM-SIS上但进行循环拉伸。经过5天的实验后,对所有三组(第一组n = 9;第二组和第三组n = 8)的支架进行处理,使用小角光散射(SALS)系统对胶原纤维取向进行定量分析。对于接种了成纤维细胞的第一组和第二组,用共聚焦荧光显微镜(每组n = 3)和透射电子显微镜(每组n = 2)检查细胞形态、取向和新产生的胶原纤维。结果显示,与其他两组相比,第一组的胶原纤维取向更接近拉伸方向排列。平均角度从(25.3)度降至(7.1)度(p < 0.05),相关的角分散也降低了((37.4)度对(18.5)度,p < 0.05)。相比之下,第二组和第三组变化极小。第一组中的细胞比第二组中的细胞在拉伸方向上排列更整齐。在第一组和第二组中均能沿着细胞观察到新产生的胶原纤维。本研究表明,接种成纤维细胞和循环拉伸相结合可以重塑和排列ECM-SIS生物支架中的胶原纤维取向。排列更好的ECM-SIS有望在促进韧带和肌腱愈合方面产生更好的效果。

相似文献

2
Positive changes in bone marrow-derived cells in response to culture on an aligned bioscaffold.
Tissue Eng Part A. 2008 Sep;14(9):1489-95. doi: 10.1089/ten.tea.2007.0422.
5
Positive effects of an extracellular matrix hydrogel on rat anterior cruciate ligament fibroblast proliferation and collagen mRNA expression.
J Orthop Translat. 2015 Jun 25;3(3):114-122. doi: 10.1016/j.jot.2015.05.001. eCollection 2015 Jul.
6
Cyclically stretched ACL fibroblasts emigrating from spheroids adapt their cytoskeleton and ligament-related expression profile.
Cell Tissue Res. 2021 Jun;384(3):675-690. doi: 10.1007/s00441-021-03416-9. Epub 2021 Apr 9.
7
Mesenchymal Stem Cell Seeding of Porcine Small Intestinal Submucosal Extracellular Matrix for Cardiovascular Applications.
PLoS One. 2016 Apr 12;11(4):e0153412. doi: 10.1371/journal.pone.0153412. eCollection 2016.
9
A Cell-Engineered Small Intestinal Submucosa-Based Bone Mimetic Construct for Bone Regeneration.
Tissue Eng Part A. 2018 Jul;24(13-14):1099-1111. doi: 10.1089/ten.TEA.2017.0407. Epub 2018 Apr 12.

引用本文的文献

1
Historical evolution, hotspots, and trends in tendon tissue engineering: A bibliometric analysis.
Regen Ther. 2025 May 6;29:600-612. doi: 10.1016/j.reth.2025.04.009. eCollection 2025 Jun.
2
Sarcoma Tumor Microenvironment.
Adv Exp Med Biol. 2020;1296:319-348. doi: 10.1007/978-3-030-59038-3_20.
3
In Vitro Innovation of Tendon Tissue Engineering Strategies.
Int J Mol Sci. 2020 Sep 14;21(18):6726. doi: 10.3390/ijms21186726.
4
Effect of Cyclic Stretch on Tissue Maturation in Myoblast-Laden Hydrogel Fibers.
Micromachines (Basel). 2019 Jun 15;10(6):399. doi: 10.3390/mi10060399.
5
Tension in fibrils suppresses their enzymatic degradation - A molecular mechanism for 'use it or lose it'.
Matrix Biol. 2020 Jan;85-86:34-46. doi: 10.1016/j.matbio.2019.06.001. Epub 2019 Jun 12.
7
Histological characteristics of ligament healing after bio-enhanced repair of the transected goat ACL.
J Exp Orthop. 2015 Dec;2(1):4. doi: 10.1186/s40634-015-0021-5. Epub 2015 Feb 28.
8
Engineering Tendon: Scaffolds, Bioreactors, and Models of Regeneration.
Stem Cells Int. 2016;2016:3919030. doi: 10.1155/2016/3919030. Epub 2015 Dec 28.
9
Anisotropic poly(ethylene glycol)/polycaprolactone hydrogel-fiber composites for heart valve tissue engineering.
Tissue Eng Part A. 2014 Oct;20(19-20):2634-45. doi: 10.1089/ten.TEA.2013.0397. Epub 2014 Jul 16.
10
Extracellular matrix as an inductive scaffold for functional tissue reconstruction.
Transl Res. 2014 Apr;163(4):268-85. doi: 10.1016/j.trsl.2013.11.003. Epub 2013 Nov 8.

本文引用的文献

2
Use of small intestine submucosa in a rat model of acute and chronic rotator cuff tear.
J Shoulder Elbow Surg. 2007 Sep-Oct;16(5 Suppl):S179-83. doi: 10.1016/j.jse.2007.03.009. Epub 2007 Jul 12.
7
Cell orientation determines the alignment of cell-produced collagenous matrix.
J Biomech. 2003 Jan;36(1):97-102. doi: 10.1016/s0021-9290(02)00233-6.
8
Fibroblast orientation to stretch begins within three hours.
J Orthop Res. 2002 Sep;20(5):953-6. doi: 10.1016/S0736-0266(02)00024-4.
9
Vascular endothelial growth factor in porcine-derived extracellular matrix.
Endothelium. 2001;8(1):11-24. doi: 10.3109/10623320109063154.
10
Type V collagen is increased during rabbit medial collateral ligament healing.
Knee Surg Sports Traumatol Arthrosc. 2000;8(5):281-5. doi: 10.1007/s001670000134.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验