Suppr超能文献

使用SAS软件进行前瞻性研究的数据管理。

Data management for prospective research studies using SAS software.

作者信息

Kruse Robin L, Mehr David R

机构信息

Department of Family and Community Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA.

出版信息

BMC Med Res Methodol. 2008 Sep 11;8:61. doi: 10.1186/1471-2288-8-61.

Abstract

BACKGROUND

Maintaining data quality and integrity is important for research studies involving prospective data collection. Data must be entered, erroneous or missing data must be identified and corrected if possible, and an audit trail created.

METHODS

Using as an example a large prospective study, the Missouri Lower Respiratory Infection (LRI) Project, we present an approach to data management predominantly using SAS software. The Missouri LRI Project was a prospective cohort study of nursing home residents who developed an LRI. Subjects were enrolled, data collected, and follow-ups occurred for over three years. Data were collected on twenty different forms. Forms were inspected visually and sent off-site for data entry. SAS software was used to read the entered data files, check for potential errors, apply corrections to data sets, and combine batches into analytic data sets. The data management procedures are described.

RESULTS

Study data collection resulted in over 20,000 completed forms. Data management was successful, resulting in clean, internally consistent data sets for analysis. The amount of time required for data management was substantially underestimated.

CONCLUSION

Data management for prospective studies should be planned well in advance of data collection. An ongoing process with data entered and checked as they become available allows timely recovery of errors and missing data.

摘要

背景

对于涉及前瞻性数据收集的研究而言,维持数据质量和完整性至关重要。必须录入数据,识别并尽可能纠正错误或缺失的数据,同时创建审核跟踪。

方法

以一项大型前瞻性研究——密苏里下呼吸道感染(LRI)项目为例,我们介绍一种主要使用SAS软件的数据管理方法。密苏里LRI项目是一项针对发生下呼吸道感染的疗养院居民的前瞻性队列研究。研究对象被纳入研究,收集数据,并进行了三年多的随访。数据通过二十种不同的表格进行收集。表格经过目视检查后被送往异地进行数据录入。使用SAS软件读取录入的数据文件,检查潜在错误,对数据集进行校正,并将批次数据合并为分析数据集。本文描述了数据管理程序。

结果

研究数据收集产生了超过20,000份已填写的表格。数据管理取得成功,生成了用于分析的干净、内部一致的数据集。数据管理所需的时间被大幅低估。

结论

前瞻性研究的数据管理应在数据收集之前提前做好规划。随着数据可用就进行录入和检查的持续过程能够及时发现错误和缺失数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b09/2546431/c6d1842424db/1471-2288-8-61-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验