Bay Line K, Caley M Julian M, Crozier Ross H
School of Marine and Tropical Biology, James Cook University, Townsville, Qld 4811, Australia.
BMC Evol Biol. 2008 Sep 12;8:248. doi: 10.1186/1471-2148-8-248.
Management strategies for coral reefs are dependant on information about the spatial population structure and connectivity of reef organisms. Genetic tools can reveal important information about population structure, however, this information is lacking for many reef species. We used a mitochondrial molecular marker to examine the population genetic structure and the potential for meta-population dynamics in a direct developing coral reef fish using 283 individuals from 15 reefs on the Great Barrier Reef, Australia. We employed a hierarchical sampling design to test genetic models of population structure at multiple geographical scales including among regions, among shelf position and reefs within regions. Predictions from island, isolation-by-distance and meta-population models, including the potential for asymmetric migration, local extinction and patterns of re-colonisation were examined.
Acanthochromis polyacanthus displayed strong genetic structure among regions (PhiST = 0.81, P < 0.0001) that supported an equilibrium isolation-by-distance model (r = 0.77, P = 0.001). Significant structuring across the continental shelf was only evident in the northern region (PhiST = 0.31, P < 0.001) and no evidence of isolation-by-distance was found within any region. Pairwise PhiST values indicated overall strong but variable genetic structure (mean PhiST among reefs within regions = 0.28, 0.38, 0.41), and asymmetric migration rates among reefs with low genetic structure. Genetic differentiation among younger reefs was greater than among older reefs supporting a meta-population propagule-pool colonisation model. Variation in genetic diversities, demographic expansion and population growth estimates indicated more frequent genetic bottlenecks/founder effects and subsequent population expansion in the central and southern regions compared to the northern one.
Our findings provide genetic evidence for meta-population dynamics in a direct developing coral reef fish and we reject the equilibrium island and isolation-by distance models at local spatial scales. Instead, strong non-equilibrium genetic structure appears to be generated by genetic bottlenecks/founder effects associated with population reductions/extinctions and asymmetric migration/(re)-colonisation of such populations. These meta-population dynamics varied across the geographical range examined with edge populations exhibiting lower genetic diversities and higher rates of population expansion than more central populations. Therefore, coral reef species may experience local population reductions/extinctions that promote overall meta-population genetic differentiation.
珊瑚礁的管理策略依赖于有关礁栖生物空间种群结构和连通性的信息。遗传工具能够揭示有关种群结构的重要信息,然而,许多礁栖物种缺乏此类信息。我们使用线粒体分子标记,利用来自澳大利亚大堡礁15个珊瑚礁的283个个体,研究一种直接发育的珊瑚礁鱼类的种群遗传结构和集合种群动态的可能性。我们采用分层抽样设计,在多个地理尺度上测试种群结构的遗传模型,包括区域间、陆架位置间以及区域内的珊瑚礁间。检验了岛屿模型、距离隔离模型和集合种群模型的预测结果,包括不对称迁移、局部灭绝和重新定殖模式的可能性。
多棘刺尻鱼在区域间表现出强烈的遗传结构(PhiST = 0.81,P < 0.0001),支持平衡的距离隔离模型(r = 0.77,P = 0.001)。整个大陆架的显著结构仅在北部区域明显(PhiST = 0.31,P < 0.001),且在任何区域内均未发现距离隔离的证据。成对PhiST值表明总体遗传结构强烈但存在变化(区域内珊瑚礁间的平均PhiST = 0.28、0.38、0.41),且在遗传结构低的珊瑚礁间存在不对称迁移率。较年轻珊瑚礁间的遗传分化大于较老珊瑚礁间,支持集合种群繁殖体库定殖模型。遗传多样性、人口统计学扩张和种群增长估计值的变化表明,与北部区域相比,中部和南部区域更频繁地出现遗传瓶颈/奠基者效应以及随后的种群扩张。
我们的研究结果为一种直接发育的珊瑚礁鱼类的集合种群动态提供了遗传证据,并且我们在局部空间尺度上否定了平衡岛屿模型和距离隔离模型。相反,强烈的非平衡遗传结构似乎是由与种群减少/灭绝以及此类种群的不对称迁移/(重新)定殖相关的遗传瓶颈/奠基者效应产生的。这些集合种群动态在所研究的地理范围内各不相同,边缘种群比更中心的种群表现出更低的遗传多样性和更高的种群扩张率。因此,珊瑚礁物种可能经历局部种群减少/灭绝,从而促进整体集合种群的遗传分化。