Soleymani Mohammad, Hossein-Zadeh Gholam-Ali, Soltanian-Zadeh Hamid
Control and Intelligent Processing Center of Excellence, Electrical and Computer Engineering Department, University of Tehran, Tehran 14395-515, Iran.
J Neurosci Methods. 2009 Jan 30;176(2):237-45. doi: 10.1016/j.jneumeth.2008.08.019. Epub 2008 Aug 26.
We propose a new method to estimate the random effect variance in group analysis of fMRI data. In the first level of analysis, general linear model (GLM) is used to estimate a parameter map ("effect") for each subject. After applying discrete wavelet transform to the "effect" maps, noise is reduced through a vertical energy thresholding (VET). The fixed effect component in each coefficient is derived by averaging the wavelet coefficients along all subjects. Then, the wavelet coefficients containing significant random effect are identified by their higher sample variance along the subjects. Wavelet coefficients containing random effect component in each subject are used to reconstruct the random effect maps through an inverse wavelet transform. Random effect variance is obtained from random effect maps for use in random effect analysis. The proposed method and other methods like GLM group analysis and variance ratio smoothing are applied to both experimental and artificial fMRI data. ROC curves, obtained from the simulated data, show improved group activation detection compared to existing random effect analysis methods. For the experimental data, the proposed method shows its high sensitivity by detecting multiple activation regions, namely visual cortex, cuneus, precuneus, thalamus, and cerebellum. From these regions, precuneus and cerebellum are not detected by majority of the previously published methods.
我们提出了一种新方法来估计功能磁共振成像(fMRI)数据组分析中的随机效应方差。在第一级分析中,使用通用线性模型(GLM)为每个受试者估计一个参数图(“效应”)。对“效应”图应用离散小波变换后,通过垂直能量阈值化(VET)降低噪声。每个系数中的固定效应成分通过对所有受试者的小波系数求平均得到。然后,通过沿着受试者具有较高样本方差来识别包含显著随机效应的小波系数。每个受试者中包含随机效应成分的小波系数用于通过逆小波变换重建随机效应图。从随机效应图中获得随机效应方差,用于随机效应分析。所提出的方法以及其他方法,如GLM组分析和方差比平滑,被应用于实验性和人工fMRI数据。从模拟数据获得的ROC曲线表明,与现有的随机效应分析方法相比,组激活检测得到了改进。对于实验数据,所提出的方法通过检测多个激活区域,即视觉皮层、楔叶、楔前叶、丘脑和小脑,显示出高灵敏度。在这些区域中,大多数先前发表的方法未检测到楔前叶和小脑。