Suppr超能文献

使用 rTMS 和 fMRI 揭示的视空间注意中两半球间相互作用的代偿性动态。

The compensatory dynamic of inter-hemispheric interactions in visuospatial attention revealed using rTMS and fMRI.

机构信息

Department of Biomedical Engineering and Department of Physical Medicine and Rehabilitation, Cleveland Clinic Cleveland, OH, USA ; Department of Neurology, Beth Israel Deaconess Medical Center, Berenson-Allen Center for Noninvasive Brain Stimulation, Harvard Medical School Boston, MA, USA.

Department of Neurology, Beth Israel Deaconess Medical Center, Berenson-Allen Center for Noninvasive Brain Stimulation, Harvard Medical School Boston, MA, USA ; Department of Psychology, University of Milano-Bicocca Milano, Italy ; Brain Connectivity Center, National Neurological Institute C. Mondino Pavia, Italy.

出版信息

Front Hum Neurosci. 2014 Apr 17;8:226. doi: 10.3389/fnhum.2014.00226. eCollection 2014.

Abstract

A balance of mutual tonic inhibition between bi-hemispheric posterior parietal cortices is believed to play an important role in bilateral visual attention. However, experimental support for this notion has been mainly drawn from clinical models of unilateral damage. We have previously shown that low-frequency repetitive TMS (rTMS) over the intraparietal sulcus (IPS) generates a contralateral attentional deficit in bilateral visual tracking. Here, we used functional magnetic resonance imaging (fMRI) to study whether rTMS temporarily disrupts the inter-hemispheric balance between bilateral IPS in visual attention. Following application of 1 Hz rTMS over the left IPS, subjects performed a bilateral visual tracking task while their brain activity was recorded using fMRI. Behaviorally, tracking accuracy was reduced immediately following rTMS. Areas ventro-lateral to left IPS, including inferior parietal lobule (IPL), lateral IPS (LIPS), and middle occipital gyrus (MoG), showed decreased activity following rTMS, while dorsomedial areas, such as Superior Parietal Lobule (SPL), Superior occipital gyrus (SoG), and lingual gyrus, as well as middle temporal areas (MT+), showed higher activity. The brain activity of the homologues of these regions in the un-stimulated, right hemisphere was reversed. Interestingly, the evolution of network-wide activation related to attentional behavior following rTMS showed that activation of most occipital synergists adaptively compensated for contralateral and ipsilateral decrement after rTMS, while activation of parietal synergists, and SoG remained competing. This pattern of ipsilateral and contralateral activations empirically supports the hypothesized loss of inter-hemispheric balance that underlies clinical manifestation of visual attentional extinction.

摘要

大脑两半球后顶叶皮质之间的相互滋补抑制平衡被认为在双侧视觉注意力中发挥着重要作用。然而,支持这一观点的实验证据主要来自单侧损伤的临床模型。我们之前已经表明,经颅磁刺激(rTMS)对顶内沟(IPS)的低频重复刺激会在双侧视觉跟踪中产生对侧注意力缺陷。在这里,我们使用功能磁共振成像(fMRI)来研究 rTMS 是否会暂时破坏双侧 IPS 在视觉注意力中的半球间平衡。在对左 IPS 进行 1 Hz rTMS 后,受试者在进行双侧视觉跟踪任务的同时,使用 fMRI 记录他们的大脑活动。行为上,rTMS 后跟踪准确性立即降低。左 IPS 腹外侧区域,包括下顶叶(IPL)、外侧 IPS(LIPS)和中枕叶(MoG),在 rTMS 后显示出活动减少,而背内侧区域,如顶上回(SPL)、上枕叶(SoG)和舌回以及颞中回(MT+),显示出更高的活动。未受刺激的右半球中这些区域的同源物的大脑活动发生了反转。有趣的是,与 rTMS 后注意力行为相关的全脑激活的演变表明,大多数枕叶协同器的激活适应性地补偿了 rTMS 后对侧和同侧的下降,而顶叶协同器和 SoG 的激活仍然存在竞争。这种同侧和对侧激活的模式从经验上支持了假设的半球间平衡丧失,这是视觉注意力消失的临床表现的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ace9/4029023/9f08ebb24f9f/fnhum-08-00226-g0001.jpg

相似文献

1
The compensatory dynamic of inter-hemispheric interactions in visuospatial attention revealed using rTMS and fMRI.
Front Hum Neurosci. 2014 Apr 17;8:226. doi: 10.3389/fnhum.2014.00226. eCollection 2014.
2
Local Immediate versus Long-Range Delayed Changes in Functional Connectivity Following rTMS on the Visual Attention Network.
Brain Stimul. 2017 Mar-Apr;10(2):263-269. doi: 10.1016/j.brs.2016.10.009. Epub 2016 Oct 19.
3
Contralesional rTMS relieves visual extinction in chronic stroke.
Neuropsychologia. 2014 Sep;62:269-76. doi: 10.1016/j.neuropsychologia.2014.07.026. Epub 2014 Aug 1.
4
The Neuroanatomical Basis for Posterior Superior Parietal Lobule Control Lateralization of Visuospatial Attention.
Front Neuroanat. 2016 Mar 24;10:32. doi: 10.3389/fnana.2016.00032. eCollection 2016.
5
Disrupted hemispheric connectivity specialization in patients with major depressive disorder: Evidence from the REST-meta-MDD Project.
J Affect Disord. 2021 Apr 1;284:217-228. doi: 10.1016/j.jad.2021.02.030. Epub 2021 Feb 12.
6
Neural activity during attentional conflict predicts reduction in tinnitus perception following rTMS.
Brain Stimul. 2017 Sep-Oct;10(5):934-943. doi: 10.1016/j.brs.2017.05.009. Epub 2017 Jun 2.
7
Short-term plasticity of visuo-haptic object recognition.
Front Psychol. 2014 Apr 2;5:274. doi: 10.3389/fpsyg.2014.00274. eCollection 2014.
9
Low-Frequency TMS Results in Condition-Related Dynamic Activation Changes of Stimulated and Contralateral Inferior Parietal Lobule.
Front Hum Neurosci. 2021 Jul 23;15:684367. doi: 10.3389/fnhum.2021.684367. eCollection 2021.

引用本文的文献

3
Traumatic brain injury and rTMS-ERPs: Case report and literature review.
Open Life Sci. 2023 Sep 13;18(1):20220677. doi: 10.1515/biol-2022-0677. eCollection 2023.
4
Dissociation in Neural Correlates of Hyperactive/Impulsive vs. Inattentive Symptoms in Attention-Deficit/Hyperactivity Disorder.
Front Neurosci. 2022 Jun 22;16:893239. doi: 10.3389/fnins.2022.893239. eCollection 2022.
5
Attention network modulation via tRNS correlates with attention gain.
Elife. 2021 Nov 26;10:e63782. doi: 10.7554/eLife.63782.
6
Low-Frequency TMS Results in Condition-Related Dynamic Activation Changes of Stimulated and Contralateral Inferior Parietal Lobule.
Front Hum Neurosci. 2021 Jul 23;15:684367. doi: 10.3389/fnhum.2021.684367. eCollection 2021.
7
Controlling Brain State Prior to Stimulation of Parietal Cortex Prevents Deterioration of Sustained Attention.
Cereb Cortex Commun. 2020 Sep 30;1(1):tgaa069. doi: 10.1093/texcom/tgaa069. eCollection 2020.
8
Cortical connectivity in the face of congenital structural changes-A case of homozygous LAMC3 mutation.
Brain Behav. 2021 Aug;11(8):e2241. doi: 10.1002/brb3.2241. Epub 2021 Jun 14.

本文引用的文献

2
Hemispheric asymmetry in visuotopic posterior parietal cortex emerges with visual short-term memory load.
J Neurosci. 2010 Sep 22;30(38):12581-8. doi: 10.1523/JNEUROSCI.2689-10.2010.
4
Studying the role of human parietal cortex in visuospatial attention with concurrent TMS-fMRI.
Cereb Cortex. 2010 Nov;20(11):2702-11. doi: 10.1093/cercor/bhq015. Epub 2010 Feb 22.
5
Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research.
Clin Neurophysiol. 2009 Dec;120(12):2008-2039. doi: 10.1016/j.clinph.2009.08.016. Epub 2009 Oct 14.
6
The role of the parietal lobe in visual extinction studied with transcranial magnetic stimulation.
J Cogn Neurosci. 2009 Oct;21(10):1946-55. doi: 10.1162/jocn.2008.21149.
7
Fixed and random effect analysis of multi-subject fMRI data using wavelet transform.
J Neurosci Methods. 2009 Jan 30;176(2):237-45. doi: 10.1016/j.jneumeth.2008.08.019. Epub 2008 Aug 26.
8
Neural measures of individual differences in selecting and tracking multiple moving objects.
J Neurosci. 2008 Apr 16;28(16):4183-91. doi: 10.1523/JNEUROSCI.0556-08.2008.
9
Quadrantic deficit reveals anatomical constraints on selection.
Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13496-500. doi: 10.1073/pnas.0702685104. Epub 2007 Aug 2.
10
Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS-fMRI.
Cereb Cortex. 2008 Apr;18(4):817-27. doi: 10.1093/cercor/bhm128. Epub 2007 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验