Suppr超能文献

通过递归量化对脑功能磁共振成像数据进行无模型分析。

Model-free analysis of brain fMRI data by recurrence quantification.

作者信息

Bianciardi Marta, Sirabella Paolo, Hagberg Gisela E, Giuliani Alessandro, Zbilut Joseph P, Colosimo Alfredo

机构信息

Neuroimaging Laboratory, Foundation Santa Lucia I.R.C.C.S., Rome, Italy.

出版信息

Neuroimage. 2007 Aug 15;37(2):489-503. doi: 10.1016/j.neuroimage.2007.05.025. Epub 2007 May 25.

Abstract

We propose a novel model-free univariate strategy for functional magnetic resonance imaging (fMRI) studies based upon recurrence quantification analysis (RQA). RQA is an auto-regressive method, which identifies recurrences in signals without any a priori assumptions. The performance of RQA is compared to that of univariate statistics based on a general linear model (GLM) and probabilistic independent component analysis (P-ICA) for a set of simulated and real fMRI data. RQA provides an appealing alternative to conventional GLM techniques, due to its exclusive feature of being model-free and of detecting potentially both linear and nonlinear dynamic processes, without requiring signal stationarity. The overall performance of the method compares positively also with P-ICA, another well-known model-free algorithm, which requires prior information to discriminate between different spatio-temporal processes. For simulated data, RQA is endowed with excellent accuracy for contrast-to-noise ratios greater than 0.2, and has a performance comparable to that of GLM for t(CNR)>or=0.8. For cerebral fMRI data acquired from a group of healthy subjects performing a finger-tapping task, (i) RQA reveals activations in the primary motor area contra-lateral to the employed hand and in the supplementary motor area, in agreement with the outcome of GLM analysis and (ii) identifies an additional brain region with transient signal changes. Moreover, RQA identifies signal recurrences induced by physiological processes other than BOLD (movement-related or of vascular origin). Finally, RQA is more robust than the GLM with respect to variations in the shape and timing of the underlying neuronal and hemodynamic responses which may vary between brain regions, subjects and tasks.

摘要

我们基于递归定量分析(RQA)提出了一种用于功能磁共振成像(fMRI)研究的新型无模型单变量策略。RQA是一种自回归方法,它无需任何先验假设就能识别信号中的递归现象。对于一组模拟和真实的fMRI数据,将RQA的性能与基于一般线性模型(GLM)和概率独立成分分析(P-ICA)的单变量统计方法的性能进行了比较。RQA为传统的GLM技术提供了一种有吸引力的替代方法,因为它具有无模型的独特特性,并且能够检测潜在的线性和非线性动态过程,而无需信号平稳性。该方法的整体性能与另一种著名的无模型算法P-ICA相比也具有优势,P-ICA需要先验信息来区分不同的时空过程。对于模拟数据,当对比噪声比大于0.2时,RQA具有出色的准确性,并且对于t(CNR)≥0.8的情况,其性能与GLM相当。对于从一组执行手指敲击任务的健康受试者获取的脑fMRI数据,(i)RQA揭示了与所使用手对侧的初级运动区和辅助运动区的激活,这与GLM分析的结果一致,并且(ii)识别出一个具有瞬态信号变化的额外脑区。此外,RQA识别出由除血氧水平依赖(BOLD)之外的生理过程(与运动相关或血管起源)引起的信号递归。最后,相对于基础神经元和血液动力学反应的形状和时间变化,RQA比GLM更稳健,这些变化可能在脑区、受试者和任务之间有所不同。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验