Nogales Juan, Palsson Bernhard Ø, Thiele Ines
Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain.
BMC Syst Biol. 2008 Sep 16;2:79. doi: 10.1186/1752-0509-2-79.
Pseudomonas putida is the best studied pollutant degradative bacteria and is harnessed by industrial biotechnology to synthesize fine chemicals. Since the publication of P. putida KT2440's genome, some in silico analyses of its metabolic and biotechnology capacities have been published. However, global understanding of the capabilities of P. putida KT2440 requires the construction of a metabolic model that enables the integration of classical experimental data along with genomic and high-throughput data. The constraint-based reconstruction and analysis (COBRA) approach has been successfully used to build and analyze in silico genome-scale metabolic reconstructions.
We present a genome-scale reconstruction of P. putida KT2440's metabolism, iJN746, which was constructed based on genomic, biochemical, and physiological information. This manually-curated reconstruction accounts for 746 genes, 950 reactions, and 911 metabolites. iJN746 captures biotechnologically relevant pathways, including polyhydroxyalkanoate synthesis and catabolic pathways of aromatic compounds (e.g., toluene, benzoate, phenylacetate, nicotinate), not described in other metabolic reconstructions or biochemical databases. The predictive potential of iJN746 was validated using experimental data including growth performance and gene deletion studies. Furthermore, in silico growth on toluene was found to be oxygen-limited, suggesting the existence of oxygen-efficient pathways not yet annotated in P. putida's genome. Moreover, we evaluated the production efficiency of polyhydroxyalkanoates from various carbon sources and found fatty acids as the most prominent candidates, as expected.
Here we presented the first genome-scale reconstruction of P. putida, a biotechnologically interesting all-surrounder. Taken together, this work illustrates the utility of iJN746 as i) a knowledge-base, ii) a discovery tool, and iii) an engineering platform to explore P. putida's potential in bioremediation and bioplastic production.
恶臭假单胞菌是研究最深入的污染物降解细菌,工业生物技术利用它来合成精细化学品。自恶臭假单胞菌KT2440的基因组公布以来,已经发表了一些对其代谢和生物技术能力的计算机分析。然而,要全面了解恶臭假单胞菌KT2440的能力,需要构建一个代谢模型,以便整合经典实验数据以及基因组和高通量数据。基于约束的重建和分析(COBRA)方法已成功用于构建和分析计算机基因组规模的代谢重建。
我们展示了恶臭假单胞菌KT2440代谢的基因组规模重建,即iJN746,它是基于基因组、生化和生理信息构建的。这个经过人工整理的重建涉及746个基因、950个反应和911种代谢物。iJN746涵盖了与生物技术相关的途径,包括聚羟基脂肪酸酯的合成以及芳香族化合物(如甲苯、苯甲酸、苯乙酸、烟酸)的分解代谢途径,这些途径在其他代谢重建或生化数据库中未被描述。iJN746的预测潜力通过包括生长性能和基因缺失研究在内的实验数据得到了验证。此外,发现计算机模拟的甲苯生长受氧限制,这表明恶臭假单胞菌基因组中尚未注释的高效氧途径的存在。此外,我们评估了从各种碳源生产聚羟基脂肪酸酯的效率,发现脂肪酸如预期的那样是最主要的候选物。
在这里,我们展示了恶臭假单胞菌的首个基因组规模重建,恶臭假单胞菌是一种在生物技术方面具有重要意义的全能菌。综上所述,这项工作说明了iJN746作为i)知识库、ii)发现工具和iii)工程平台的实用性,以探索恶臭假单胞菌在生物修复和生物塑料生产方面的潜力。