文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology.

作者信息

Puchałka Jacek, Oberhardt Matthew A, Godinho Miguel, Bielecka Agata, Regenhardt Daniela, Timmis Kenneth N, Papin Jason A, Martins dos Santos Vítor A P

机构信息

Synthetic and Systems Biology Group, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany.

出版信息

PLoS Comput Biol. 2008 Oct;4(10):e1000210. doi: 10.1371/journal.pcbi.1000210. Epub 2008 Oct 31.


DOI:10.1371/journal.pcbi.1000210
PMID:18974823
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2563689/
Abstract

A cornerstone of biotechnology is the use of microorganisms for the efficient production of chemicals and the elimination of harmful waste. Pseudomonas putida is an archetype of such microbes due to its metabolic versatility, stress resistance, amenability to genetic modifications, and vast potential for environmental and industrial applications. To address both the elucidation of the metabolic wiring in P. putida and its uses in biocatalysis, in particular for the production of non-growth-related biochemicals, we developed and present here a genome-scale constraint-based model of the metabolism of P. putida KT2440. Network reconstruction and flux balance analysis (FBA) enabled definition of the structure of the metabolic network, identification of knowledge gaps, and pin-pointing of essential metabolic functions, facilitating thereby the refinement of gene annotations. FBA and flux variability analysis were used to analyze the properties, potential, and limits of the model. These analyses allowed identification, under various conditions, of key features of metabolism such as growth yield, resource distribution, network robustness, and gene essentiality. The model was validated with data from continuous cell cultures, high-throughput phenotyping data, (13)C-measurement of internal flux distributions, and specifically generated knock-out mutants. Auxotrophy was correctly predicted in 75% of the cases. These systematic analyses revealed that the metabolic network structure is the main factor determining the accuracy of predictions, whereas biomass composition has negligible influence. Finally, we drew on the model to devise metabolic engineering strategies to improve production of polyhydroxyalkanoates, a class of biotechnologically useful compounds whose synthesis is not coupled to cell survival. The solidly validated model yields valuable insights into genotype-phenotype relationships and provides a sound framework to explore this versatile bacterium and to capitalize on its vast biotechnological potential.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c14/2563689/e7584401debf/pcbi.1000210.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c14/2563689/df95c0c1c63f/pcbi.1000210.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c14/2563689/3523a4da2795/pcbi.1000210.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c14/2563689/1bfc83cd9885/pcbi.1000210.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c14/2563689/741cd6512940/pcbi.1000210.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c14/2563689/acc9f15c8b45/pcbi.1000210.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c14/2563689/e7584401debf/pcbi.1000210.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c14/2563689/df95c0c1c63f/pcbi.1000210.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c14/2563689/3523a4da2795/pcbi.1000210.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c14/2563689/1bfc83cd9885/pcbi.1000210.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c14/2563689/741cd6512940/pcbi.1000210.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c14/2563689/acc9f15c8b45/pcbi.1000210.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c14/2563689/e7584401debf/pcbi.1000210.g006.jpg

相似文献

[1]
Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology.

PLoS Comput Biol. 2008-10

[2]
Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol.

Microb Cell Fact. 2016-5-3

[3]
A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory.

BMC Syst Biol. 2008-9-16

[4]
In silico genome-scale metabolic analysis of Pseudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survival.

Biotechnol J. 2010-7

[5]
Experimental validation of in silico estimated biomass yields of Pseudomonas putida KT2440.

Biotechnol J. 2017-6

[6]
High-quality genome-scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities.

Environ Microbiol. 2019-11-11

[7]
Genome reduction boosts heterologous gene expression in Pseudomonas putida.

Microb Cell Fact. 2015-2-21

[8]
Pseudomonas putida as a functional chassis for industrial biocatalysis: From native biochemistry to trans-metabolism.

Metab Eng. 2018-5-16

[9]
The role of GlpR repressor in Pseudomonas putida KT2440 growth and PHA production from glycerol.

Environ Microbiol. 2012-5-31

[10]
Synthetic Control of Metabolic States in Pseudomonas putida by Tuning Polyhydroxyalkanoate Cycle.

mBio. 2022-2-22

引用本文的文献

[1]
Artificial symbiont replacement in a vertically transmitted plant symbiosis reveals a role for microbe-microbe interactions in enforcing specificity.

ISME J. 2025-1-2

[2]
A machine-learning approach for predicting butyrate production by microbial consortia using metabolic network information.

PeerJ. 2025-5-28

[3]
Addressing genome scale design tradeoffs in Pseudomonas putida for bioconversion of an aromatic carbon source.

NPJ Syst Biol Appl. 2025-1-14

[4]
Using metabolic networks to predict cross-feeding and competition interactions between microorganisms.

Microbiol Spectr. 2024-5-2

[5]
Genome-scale metabolic network model and phenome of solvent-tolerant Pseudomonas putida S12.

BMC Genomics. 2024-1-16

[6]
Reconstruction and metabolic profiling of the genome-scale metabolic network model of A1501.

Synth Syst Biotechnol. 2023-10-20

[7]
Systematizing Microbial Bioplastic Production for Developing Sustainable Bioeconomy: Metabolic Nexus Modeling, Economic and Environmental Technologies Assessment.

J Polym Environ. 2023

[8]
Development of genetic tools for heterologous protein expression in a pentose-utilizing environmental isolate of Pseudomonas putida.

Microb Biotechnol. 2023-3

[9]
When metabolic prowess is too much of a good thing: how carbon catabolite repression and metabolic versatility impede production of esterified α,ω-diols in Pseudomonas putida KT2440.

Biotechnol Biofuels. 2021-11-20

[10]
ReScribe: An Unrestrained Tool Combining Multiplex Recombineering and Minimal-PAM ScCas9 for Genome Recoding .

ACS Synth Biol. 2021-10-15

本文引用的文献

[1]
Metabolic capabilities of Escherichia coli: I. synthesis of biosynthetic precursors and cofactors.

J Theor Biol. 1993-12-21

[2]
Statistical analysis in the estimation of maintenance and true growth yield coefficients.

Biotechnol Bioeng. 1984-4

[3]
Formulating genome-scale kinetic models in the post-genome era.

Mol Syst Biol. 2008

[4]
Is maximization of molar yield in metabolic networks favoured by evolution?

J Theor Biol. 2008-6-7

[5]
Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1.

J Bacteriol. 2008-4

[6]
Systems metabolic engineering of Escherichia coli for L-threonine production.

Mol Syst Biol. 2007

[7]
Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12.

J Biotechnol. 2007-10-15

[8]
Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli.

Mol Syst Biol. 2007

[9]
Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data.

J Biol Chem. 2007-9-28

[10]
Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis.

J Bacteriol. 2007-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索