Bioprocess Engineering, Wageningen University & Research, Wageningen, The Netherlands.
Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
Microb Biotechnol. 2024 Mar;17(3):e14423. doi: 10.1111/1751-7915.14423.
Medium-chain-length α,ω-diols (mcl-diols) play an important role in polymer production, traditionally depending on energy-intensive chemical processes. Microbial cell factories offer an alternative, but conventional strains like Escherichia coli and Saccharomyces cerevisiae face challenges in mcl-diol production due to the toxicity of intermediates such as alcohols and acids. Metabolic engineering and synthetic biology enable the engineering of non-model strains for such purposes with P. putida emerging as a promising microbial platform. This study reviews the advancement in diol production using P. putida and proposes a four-module approach for the sustainable production of diols. Despite progress, challenges persist, and this study discusses current obstacles and future opportunities for leveraging P. putida as a microbial cell factory for mcl-diol production. Furthermore, this study highlights the potential of using P. putida as an efficient chassis for diol synthesis.
中链长度α,ω-二醇(mcl-二醇)在聚合物生产中起着重要作用,传统上依赖于能源密集型的化学工艺。微生物细胞工厂提供了一种替代方法,但由于中间体如醇和酸的毒性,大肠杆菌和酿酒酵母等传统菌株在 mcl-二醇生产方面面临挑战。代谢工程和合成生物学使非模型菌株能够进行此类工程设计,恶臭假单胞菌作为一种有前途的微生物平台而崭露头角。本研究综述了利用恶臭假单胞菌生产二醇的进展,并提出了一种可持续生产二醇的四模块方法。尽管取得了进展,但挑战仍然存在,本研究讨论了利用恶臭假单胞菌作为 mcl-二醇生产的微生物细胞工厂的当前障碍和未来机遇。此外,本研究强调了利用恶臭假单胞菌作为二醇合成有效底盘的潜力。