Lee Taewon, Desai Varsha G, Velasco Cruz, Reis Robert J S, Delongchamp Robert R
Department of Information and Mathematics, Korea University, Jochiwon, Chungnam 339-700, Korea.
BMC Bioinformatics. 2008 Aug 12;9 Suppl 9(Suppl 9):S20. doi: 10.1186/1471-2105-9-S9-S20.
In studies that use DNA arrays to assess changes in gene expression, it is preferable to measure the significance of treatment effects on a group of genes from a pathway or functional category such as gene ontology terms (GO terms, http://www.geneontology.org) because this facilitates the interpretation of effects and may markedly increase significance. A modified meta-analysis method to combine p-values was developed to measure the significance of an overall treatment effect on such functionally-defined groups of genes, taking into account the correlation structure among genes. For hypothesis testing that allows gene expression to change in both directions, p-values are calculated under the null distribution generated by a Monte Carlo method. As a test of this procedure, we attempted to distinguish altered pathways in microarray studies performed with Mitochips, oligonucleotide microarrays specific to mitochondrial DNA-encoded transcripts. We found that our analytic method improves the specificity of selection for altered pathways, due to incorporation of the inter-gene correlation structure in each pathway. It is thus a practical method to measure treatment effects on GO groups. In many actual applications, microarray experiments measure treatment effects under complicated design structures and with small sample sizes. For such applications to real data of limited statistical power, and also in computer simulations, we demonstrate that our method gives reasonable test results.
在使用DNA阵列评估基因表达变化的研究中,最好测量治疗效果对来自一条通路或功能类别(如基因本体术语,GO术语,http://www.geneontology.org)的一组基因的显著性,因为这有助于解释效果,并且可能显著提高显著性。我们开发了一种改进的荟萃分析方法来合并p值,以测量对这类功能定义的基因组的总体治疗效果的显著性,同时考虑到基因之间的相关结构。对于允许基因表达在两个方向上变化的假设检验,p值是在由蒙特卡罗方法生成的零分布下计算的。作为对该程序的检验,我们试图在使用线粒体芯片(一种针对线粒体DNA编码转录本的寡核苷酸微阵列)进行的微阵列研究中区分改变的通路。我们发现,由于纳入了每条通路中的基因间相关结构,我们的分析方法提高了对改变通路的选择特异性。因此,它是一种测量对GO组治疗效果的实用方法。在许多实际应用中,微阵列实验在复杂的设计结构和小样本量下测量治疗效果。对于这种统计能力有限的实际数据应用,以及在计算机模拟中,我们证明我们的方法给出了合理的测试结果。